• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于重采样的终端区飞行轨迹可信聚类方法

赵元棣 王超 李善梅 张召悦

赵元棣, 王超, 李善梅, 张召悦. 基于重采样的终端区飞行轨迹可信聚类方法[J]. 西南交通大学学报, 2017, 30(4): 817-825,834. doi: 10.3969/j.issn.0258-2724.2017.04.022
引用本文: 赵元棣, 王超, 李善梅, 张召悦. 基于重采样的终端区飞行轨迹可信聚类方法[J]. 西南交通大学学报, 2017, 30(4): 817-825,834. doi: 10.3969/j.issn.0258-2724.2017.04.022
ZHAO Yuandi, WANG Chao, LI Shanmei, ZHANG Zhaoyue. Dependable Clustering Method of Flight Trajectory in Terminal Area Based on Resampling[J]. Journal of Southwest Jiaotong University, 2017, 30(4): 817-825,834. doi: 10.3969/j.issn.0258-2724.2017.04.022
Citation: ZHAO Yuandi, WANG Chao, LI Shanmei, ZHANG Zhaoyue. Dependable Clustering Method of Flight Trajectory in Terminal Area Based on Resampling[J]. Journal of Southwest Jiaotong University, 2017, 30(4): 817-825,834. doi: 10.3969/j.issn.0258-2724.2017.04.022

基于重采样的终端区飞行轨迹可信聚类方法

doi: 10.3969/j.issn.0258-2724.2017.04.022
基金项目: 

国家自然科学基金民航联合基金资助项目(U1533106,U1533112)

中央高校基本科研业务费专项资金资助项目(3122016C009)

详细信息
    作者简介:

    赵元棣(1983—),男,助理研究员,博士,研究方向为空管信息处理,E-mail:dopp_zyd@163.com

Dependable Clustering Method of Flight Trajectory in Terminal Area Based on Resampling

  • 摘要: 为了准确掌握终端区空中交通流复杂多变的空间分布特征,有效评估、优化进离场程序,基于重采样技术研究了终端区三维真实飞行轨迹的聚类问题,提出了一种计算速度快、可扩展性强、可信度高的聚类方法.首先,结合重采样和主成分分析方法,将高维轨迹数据在保留飞行特征的前提下映射到低维空间;其次,基于MeanShift方法建立飞行轨迹聚类分析与异常轨迹提取模型;最后,利用终端区的真实飞行轨迹数据进行实例验证,并分析模型中各个参数对聚类结果的影响.研究结果表明:该方法耗时0.004 s得到累计贡献率为96.16%的主成分,较好地逼近原始飞行轨迹数据;相较于层次聚类法,本文方法得到的飞行轨迹聚类结果具有更高的可信度,能够准确对应机场标准进场航线设置,并将相似度较低的飞行轨迹提取为异常轨迹.

     

  • 王超,韩邦村,王飞. 基于轨迹谱聚类的终端区盛行交通流识别方法[J]. 西南交通大学学报,2014,49(3): 546-552. WANG Chao, HAN Bangcun, WANG Fei. Identification of prevalent air traffic flow in terminal airspace based on trajectory spectral clustering[J]. Journal of Southwest Jiaotong University, 2014, 49(3): 546-552.
    ATEV S, MILLER G, PAPANIKOLOPOULOS N P. Clustering of vehicle trajectories[J]. Intelligent Transportation Systems IEEE Transactions, 2010, 11(3): 647-657.
    FERREIRA N, KLOSOWSKI J T, SCHEIDEGGER C E, et al. Vector field k-means: clustering trajectories by fitting multiple vector fields[J]. Computer Graphics Forum, 2013, 32(3): 201-210.
    HU Weiming, XIE Dan, FU Zhouyu, et al. Semantic-based surveillance video retrieval[J]. IEEE Transactions on Image Processing, 2007, 16(4): 1168-1181.
    KALAYEH M M, MUSSMANN S, PETRAKOVA A, et al. Understanding trajectory behavior: a motion pattern approach[J]. Crcv.Uc.Edu, 2015: 1-14.
    LEE J, HAN J W, WANG K. Trajectory clustering: a partition and group framework[C]//The 5th ACM SIGKDD International Conference on Knowledge and Data Mining. SanDiego:[s. n. ], 2007: 593-604.
    LEE J, HAN J, LI X, et al. Traclass: trajectory classification using hierarchical region-based and trajectory-based clustering[C]//The 34th International Conference on Very Large Data Bases. Auckland.: VLDB, 2008: 1081-1094.
    LEE J, HAN J, LI X. Trajectory outlier detection: a partition-and-detect framework[C]//IEEE 24th International Conference on Data Engineering. Cancun: IEEE, 2008: 140-149.
    王超,徐肖豪,王飞. 基于航迹聚类的终端区进场程序管制适用性分析[J]. 南京航空航天大学学报,2013,45(1): 130-139. WANG Chao, XU Xiaohao, WANG Fei. ATC serviceability analysis of terminal arrival procedures using trajectory clustering[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2013, 45(1): 130-139.
    王超,王明明,王飞. 基于改进的模糊C-Means航迹聚类方法研究[J]. 中国民航大学学报,2013,31(3): 14-18. WANG Chao, WANG Mingming, WANG Fei. Trajectory clustering method research based on improved fuzzy C-Means[J]. Journal of Civil Aviation University of China, 2013, 31(3): 14-18.
    王超. 飞行程序运行评估的理论方法及仿真应用研究[D]. 南京:南京航空航天大学,2012.
    董菁,张毅,张佐,等. 基于主成分分析法的城市交通路口相关性分析[J]. 西南交通大学学报,2003,38(6): 619-622. DONG Jing, ZHANG Yi, ZHANG Zuo et al. Principal component analysis of dependency of urban intersections[J]. Journal of Southwest Jiaotong University, 2003, 38(6): 619-622.
    FUKUNAGA K, HOSTETLER L D. The estimation of the gradient of a density function with applications in pattern recognition[J]. IEEE Transactions on Information Theory, 1975, 21(1): 32-40.
    CHENG Yi. Mean shift, mode seeking, and clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(8): 790-799.
    NIKUNJ O. Flight tracks, Northern California Tracon.[2013-03-1]. https://c3.nasa.gov/dashlink/resources /132.
  • 期刊类型引用(16)

    1. 王志森,张召悦,冯朝辉,崔哲. 终端区飞行轨迹聚类分析及异常轨迹识别. 科学技术与工程. 2022(09): 3807-3814 . 百度学术
    2. 姚学成,胡明华,袁立罡,陈海燕,刘振亚. 对流天气下基于聚类算法的终端区交通流分析. 航空计算技术. 2022(03): 42-46 . 百度学术
    3. 郁舒昊,周辉,叶春杨,王太正. SDFA:基于多特征融合的船舶轨迹聚类方法研究. 计算机科学. 2022(S1): 256-260 . 百度学术
    4. 杨璐,李印凤,傅子涛,肖淑敏,魏秀杰. 基于自适应谱聚类的终端区进场轨迹识别. 指挥信息系统与技术. 2022(04): 63-68 . 百度学术
    5. 李楠,强懿耕,樊瑞. 基于轨迹压缩的航空器飞行轨迹聚类研究. 重庆交通大学学报(自然科学版). 2021(01): 1-6 . 百度学术
    6. 李超群,李善梅,马维宇,张程. 基于轨迹聚类的空中交通流自动识别方法研究. 计算机仿真. 2021(10): 73-77 . 百度学术
    7. 纪新雨,初建宇,李印凤,傅子涛,李萌. 基于改进CURE算法的终端区航迹聚类. 指挥信息系统与技术. 2021(06): 63-67 . 百度学术
    8. 赵元棣,田英杰,吴佳馨. 航空器飞行轨迹相似性度量及聚类分析. 中国科技论文. 2020(02): 249-254 . 百度学术
    9. 赵元棣,付云峰,吴佳馨. 航空器飞行轨迹表示方法及其应用. 科学技术与工程. 2020(12): 5000-5004 . 百度学术
    10. 李楠,孙瑜,强懿耕. 机动区主流滑行路径异常轨迹检测. 计算机仿真. 2020(07): 23-27 . 百度学术
    11. 赵立新. 差异性采样下的流数据聚类算法分析. 计算机产品与流通. 2019(01): 167-168 . 百度学术
    12. 孙石磊,王超,赵元棣. 基于轮廓系数的参数无关空中交通轨迹聚类方法. 计算机应用. 2019(11): 3293-3297 . 百度学术
    13. 李树仁,卢朝阳,任广建. 基于改进谱聚类的终端区航空器飞行轨迹分析. 武汉理工大学学报(交通科学与工程版). 2019(06): 1130-1134 . 百度学术
    14. 李楠,强懿耕,孙瑜,邓人博. 终端区航空器异常轨迹识别研究. 中国安全科学学报. 2018(11): 21-27 . 百度学术
    15. 戴福青,庞笔照,任治,赵元棣. 面向管型航路运行的交叉点拥挤风险评估. 武汉理工大学学报. 2018(02): 42-49 . 百度学术
    16. 李楠,强懿耕,邓人博. 基于能量高度的终端区异常轨迹识别研究. 武汉理工大学学报. 2018(10): 38-43 . 百度学术

    其他类型引用(21)

  • 加载中
计量
  • 文章访问数:  670
  • HTML全文浏览量:  94
  • PDF下载量:  207
  • 被引次数: 37
出版历程
  • 收稿日期:  2016-04-22
  • 刊出日期:  2017-08-25

目录

    /

    返回文章
    返回