Analysis of Ultimate Load-Carrying Capacity of Crescent-Shaped Concrete-Filled Steel Tube Arch Bridge
-
摘要: 为了研究结构参数对新月型钢管混凝土拱桥极限承载力的影响,基于考虑约束效应的核心混凝土本构关系,对新月型拱桥的极值点稳定问题进行了分析.首先通过特征值分析,获取对结构承载能力最不利的荷载工况;其次在该工况下考虑结构的几何非线性和材料非线性,采用Riks法迭代求解,得到结构的极限承载力和稳定安全系数;最后以石棉大渡河桥为工程背景,研究了主副拱肋夹角、钢管材料强度、核心混凝土强度、含钢率等结构参数对极限承载能力的影响.研究结果表明:新月拱的失稳形式为拱肋整体的横向失稳,结构的稳定性主要取决于恒载大小;考虑几何非线性后,极限承载能力下降3%,当初始缺陷从1%增加至10%时,极限承载能力下降1%,考虑材料非线性后,承载能力下降55%;含钢率增加至1.5倍时,稳定安全系数提高19.0%;核心混凝土强度从C50提高至C60时,稳定安全系数提高12.0%;钢材强度从Q345提高至Q420时,稳定安全系数提高9.6%;随主副拱肋夹角从10变化至25时,稳定安全系数降低5.9%.Abstract: In order to investigate the influences of structure parameters on the ultimate load-carrying capacity of crescent-shaped concrete-filled steel tube arch bridge, based on the constitutive relation of core concrete under confinement, the extreme-point stability of the arch bridge was analyzed. First, the most unfavorable load combination for ultimate load-carrying capacity was obtained by eigenvalue analysis, and then by considering the effects of the geometry nonlinearity and material nonlinearity in this loading condition, the ultimate load-carrying capacity and safety factor of stability were solved by Riks iterative solution. At last, the Shimian Dadu River Bridge was used as an example to analyze the effects of structure parameters on ultimate load-carrying capacity such as the angle between main and side arch rib, the strengths of steel and core concrete, and steel ratio. The analysis shows that the buckling mode of the crescent-shaped arch bridge is transverse deformation of the whole rib, and the structure stability mainly depends on the sustained load. The bearing capacity decreased 3% when considering geometry nonlinearity, decreased 1% when the initial imperfection increased from 1% to 10%, and decreased 55% when considering both geometry and material nonlinearities. When the steel ratio is increased by 50%, the safety factor of stability increased 19.0%; with the concrete strength increasing from C50 to C60, it increased 12.0%; with the steel strength increasing from Q345 to Q420, it increased 9.6%; with the angle between ribs increasing from 10to 25, it decreased 5.9%.
-
韩林海. 钢管混凝土结构-理论与实践[M]. 北京:科学出版社,2004: 11-71. 钟善桐. 钢管混凝土统一理论-研究与应用[M]. 北京:清华大学出版社,2006: 34-280. 韦建刚,陈宝春. 钢管混凝土拱材料非线性有限元分析方法[J]. 福州大学学报:自然科学版,2004,32(3): 344-348. WEI Jiangang, CHEN Baochun. Finite element methods for analysis on material nonlinearity of concrete-filled steel tubular arch[J]. Journal of Fuzhou University: Natural Science, 2004, 32(3): 344-348. 陈宝春,林嘉阳. 钢管混凝土单圆管拱空间受力双重非线性有限元分析[J]. 铁道学报,2005,27(6): 77-84. CHEN Baochun, LIN Jiayang. Nonlinear finite element analysis of concrete filled steel tubular (single tube) arch subjected to spatial loads[J]. Journal of the China Railway Society, 2005, 27(6): 77-84. 夏旻,肖汝成,吴剑波. 钢管混凝土拱桥极限承载力的参数研究[J]. 华中科技大学学报:自然科学版,2007,35(4): 106-109. XIA Min, XIAO Rucheng, WU Jianbo. Rametric study of the ultimate load-carrying capacity of a concrete-filled steel tubular arch bridge[J]. Huazhong Univ. of Sci. Tech: Nature Science Edition, 2007, 35(4): 106-109. 杨永清. 抛物线双肋拱在保向力作用下的横向稳定性[J]. 西南交通大学学报,2003,38(1): 43-48. YANG Yongqing. Lateral stability of parabolic double-rib arch under directional loads[J]. Journal of Southwest Jiaotong University, 2003, 38(1): 43-48. 蒲黔辉,霍学晋,杨永清. 基于统一理论的蝶形拱桥空间稳定性分析[J]. 西南交通大学学报,2010,45(6): 868-874. PU Qianhui, HUO Xuejin, YANG Yongqing. Spatial stability analysis of butterfly-shape arch bridges based on unified theory[J]. Journal of Southwest Jiaotong University, 2010, 45(6): 868-874. 樊启武,钱永久,黄道全. 拱肋刚度的选取对钢管混凝土拱桥稳定计算的影响[J]. 公路交通科技,2008,25(3): 75-78. FAN Qiwu, QIAN Yongjiu, HUANG Daoquan. Influence of steel-concrete pipe arch rib rigidity on stability of concrete-filled steel tube bridge[J]. Journal of Highway and Transportation Research and Development, 2008, 25(3): 75-78. 谭国宏,李龙安. 某下承式钢管混凝土拱桥二类稳定分析研究[J]. 桥梁建设,2011,41(3): 36-39. TAN Guohong, LI Longan. Analytical study of category 2 stability of a concretefilled steel tubular through arch bridge[J]. Bridge Construction, 2011, 41(3): 36-39. 李小年,马如进,陈艾荣. 大跨度外倾式拱桥稳定及极限承载力分析[J]. 桥梁建设,2012,42(1): 36-41. LI Xiaonian, MA Rujin. CHEN Airong. Analysis of stability and ultimate load-carrying capacity of a long span arch bridge with outward inclined arch ribs[J]. Bridge Construction, 2012, 42(1): 36-41. 中华人民共和国交通部. JTG D602004 公路桥涵设计通用规范[S]. 北京:人民交通出版社,2004. 程进,江见鲸,肖汝诚,等. 大跨度拱桥极限承载力的参数研究[J]. 中国公路学报,2003,16(2): 45-47. CHENG Jin, JIANG Jianjing, XIAO Rucheng, et al. Parametric study of ultimate capacity of long-span arch bridges[J]. China Journal of Highway and Transport, 2003, 16(2): 45-47. 沈尧兴,赵志军,华旭刚. 大跨度钢管混凝土拱桥的稳定性分析[J]. 西南交通大学学报,2003,38(6): 654-657. SHEN Yaoxing, ZHAO Zhijun, HUA Xugang. Stability analysis of long-span arch bridge of concrete-filled steel tubes[J]. Journal of Southwest Jiaotong University, 2003, 38(6): 654-657. 熊仲明,韦俊,曹欣,等. 46.5 m大跨度弧形钢拱结构的稳定及其缺陷影响分析[J]. 工程力学,2009, 26(11): 172-178. XIONG Zhongming, WEI Jun, CAO Xin, et al. Analysis of stability and imperfection effect of 46.5 m long-span arc steel arch structure[J].Engineering Mechanics, 2009, 26(11): 172-178. 云迪,张素梅. 大跨中承式钢管混凝土拱桥极限承载能力[J]. 吉林大学学报:工学版,2007,37(6): 1308-1312. YUN Di, ZHANG Sumei. Analysis on ultimate load-bearing capacity of large span half-through CFST arch bridge[J]. Journal of Jilin University: Engineering and Technology Edition, 2007, 37(6): 1308-1321. 黄云,张清华,叶华文,等. 钢管混凝土系杆拱桥空间稳定性分析[J]. 桥梁建设,2014,44(4): 50-56. HUANG Yun, ZHANG Qinghua, YE Huawen, et al. Analysis of spatial stability of a CFST tied arch bride[J]. Bridge Construction, 2014, 44(4): 50-56.
点击查看大图
计量
- 文章访问数: 554
- HTML全文浏览量: 71
- PDF下载量: 180
- 被引次数: 0