• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

有机聚合物剪力键的破坏机理及承载能力研究

占玉林 李贵峰 赵人达 邹赵勇 薛登宇

占玉林, 李贵峰, 赵人达, 邹赵勇, 薛登宇. 有机聚合物剪力键的破坏机理及承载能力研究[J]. 西南交通大学学报, 2017, 30(3): 524-531. doi: 10.3969/j.issn.0258-2724.2017.03.012
引用本文: 占玉林, 李贵峰, 赵人达, 邹赵勇, 薛登宇. 有机聚合物剪力键的破坏机理及承载能力研究[J]. 西南交通大学学报, 2017, 30(3): 524-531. doi: 10.3969/j.issn.0258-2724.2017.03.012
ZHAN Yulin, LI Guifeng, ZHAO Renda, ZOU Zhaoyong, XUE Dengyu. Failure Mechanism and Shear Capacity of Organic Polymer Shear Connectors[J]. Journal of Southwest Jiaotong University, 2017, 30(3): 524-531. doi: 10.3969/j.issn.0258-2724.2017.03.012
Citation: ZHAN Yulin, LI Guifeng, ZHAO Renda, ZOU Zhaoyong, XUE Dengyu. Failure Mechanism and Shear Capacity of Organic Polymer Shear Connectors[J]. Journal of Southwest Jiaotong University, 2017, 30(3): 524-531. doi: 10.3969/j.issn.0258-2724.2017.03.012

有机聚合物剪力键的破坏机理及承载能力研究

doi: 10.3969/j.issn.0258-2724.2017.03.012
基金项目: 

国家自然科学基金资助项目(51208431)

国家重点研发计划资助项目(2016YFB1200401)

四川省科技计划资助项目(2017GZ0369)

详细信息
    作者简介:

    占玉林(1978—),男,副教授,博士,研究方向为钢-混凝土组合结构桥梁,E-mail:yulinzhan@home.swjtu.edu.cn

Failure Mechanism and Shear Capacity of Organic Polymer Shear Connectors

  • 摘要: 为了解决金属剪力键存在初始裂缝、焊接残余应力、剪应力传递不均匀等缺陷,进行了有机聚合物非金属剪力键代替传统金属剪力键的研究.采用推出试验方法,设计、制作并测试了8组试件(共24个试件),在考虑有机聚合物剪力键的粘结厚度、弹性模量及界面处理工艺等影响参数的基础上,研究了这类剪力键的破坏机理和极限承载能力,同时,提出了预测界面极限抗剪承载能力的计算公式.研究结果表明:有机聚合物与混凝土共同被剪坏是主要的破坏形式;非金属剪力键界面极限剪应力分布在1.10~2.47 MPa之间,非金属剪力键与金属剪力键具有同等能力的界面抗剪水平.

     

  • ZONA A, RANZI G. Shear connection slip demand in composite steel-concrete beams with solid slabs[J]. Journal of Constructional Steel Research, 2014, 102(11): 266-281.
    SOTY R, SHIMA H. Formulation for maximum shear force on L-shape shear connector subjected to strut compressive force at splitting crack occurrence in steel-concrete composite structures[J]. Engineering Structures, 2013, 46(1): 581-592.
    MALEKI S, BAGHERI S. Behaviour of channel shear connectors. part Ⅰ: experimental study[J]. Journal of Constructional Steel Research, 2008, 64(12): 1333-1340.
    LARBI S A, FEFFIER E, JURKIEWIEZ B, et al. Static behavior of steel concrete beam connected by bonding[J]. Engineering Structures, 2007, 29(6): 1034-1042.
    BOUAZAOUI L, JURKIEWIEZ B, DELMAS Y, et al. Static behaviour of a full-scale steel-concrete beam with epoxy-bonding connection[J]. Engineering Structures, 2008, 30(7): 1981-1990.
    JURKIEWIEZ B, MEAUD C, FERRIER E. Non-linear models for steel-concrete epoxy-bonded beams [J]. Journal of Constructional Steel Research, 2014, 100(1): 108-121.
    杨文瑞,何雄君,代力. CFRP锚杆与环氧树脂的耐久性试验研究[J]. 武汉理工大学学报,2014,36(11): 93-96. YANG Wenrui, HE Xiongjun, DAI Li. Experimental study the durability of CFRP anchor and epoxy resin[J]. Journal of Wuhan University of Technology, 2013, 36(11): 93-96.
    李保亮,丁百湛,黄国君,等. CFRP嵌入式加固砌体结构抗弯性能试验研究[J]. 新型建筑材料,2014,41(9): 91-94. LI Baoliang, DING Baizhan, HUANG Guojun, et al. Experimental study of out-of-plane flexural performance of masonry structures strengthened with near-surface mounted carbon fiber reinforce polymer[J]. Journal of New Construction Material, 2014, 41(9): 91-94.
    Civil Engineering and Building Structures Standards Committee to Technical Committee.BS5400: steel, concrete and composite bridge, Part 5: code of practice for design of composite bridge[S]. London: British Standards Institution, 1988.
    BERTHET J F, YURTDAS I, DELMAS Y, et al. Evaluation of the adhesion resistance between steel and concrete by push out test[J]. International Journal of Adhesion and Adhesives, 2011, 31(2): 75-83.
    GARBACZ A, COURAD L, KOSTANA K. Characterization of concrete surface roughness and its relation to adhesion in repair systems[J]. Materials Characterization, 2006, 56(4/5): 281-289.
    LI A, KRISTER C. Push-out tests on studs in high strength and normal concrete[J]. Journal of Constructional Steel Research, 1996, 36(1): 15-29.
    宗周红,车惠民. 剪力连接件静载和疲劳试验研究[J]. 福州大学学报:自然科学版,1999,27(6): 61-66. ZONG Zhouhong, CHE Huimin. Experimental study of shear connector under static and fatigue loading[J]. Journal of Fuzhou University: Natural Science, 1999, 27(6): 61-66.
    SCOTT A C, PRABHJEET S. Behavior of shear studs subjected to fully reversed cycle loading[J]. ASCE, Journal of Structural Engineering, 2003, 129(11): 1466-1474.
    ISABEL V, PAULO J S C. Experimental analysis of perfobond shear connection between steel and lightweight concrete[J]. Journal of Constructional Steel Research, 2004, 60(3/4/5): 465-479.
    SHIM C S, LEE P G, YOON T Y. Static behavior of large stud shear connectors[J]. Engineering Structures, 2004, 26(12): 1853-1860.
    LEE P G, SHIM C S, CHANG S P. Static and fatigue behavior of large stud shear connectors for steel-concrete composite bridge[J]. Journal of constructional steel research, 2005, 61(9): 1270-1285.
    LAM D. Capacities of headed stud shear connectors in composite steel beams with precast hollowcore slabs[J]. Journal of Constructional Steel Research, 2007, 63(9): 1160-1174.
    XUE D Y, LIU Y Q, YU Z, et al. Static behavior of multi-stud shear connectors for steel-concrete composite bridge[J]. Journal of Constructional Steel Research, 2012,74(8): 1-7.
    XU C, SUGIURA K. Parametric push-out analysis on group studs shear connector under effect of bending-induced concrete cracks[J]. Journal of Constructional Steel Research, 2013, 89(5): 86-97.
    KIM J S, KWARK J, JOH C, et al. Headed stud shear connector for thin-ultrahigh-performance concrete bridge deck[J]. Journal of Constructional Steel Research, 2015,108: 23-30.
    REN X S, ZHOU B. Design and analysis of a reinforced concrete beam retrofitted by externally bonded h-type steel member[J]. Procedia Engineering, 2011, 14: 2133-2140.
    LUO Y J, LI A, KANG Z. Parametric study of bonded steel-concrete composite beams by using finite element analysis[J]. Engineering Structures, 2012, 34(1): 40-51.
  • 加载中
计量
  • 文章访问数:  473
  • HTML全文浏览量:  76
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-26
  • 刊出日期:  2017-06-25

目录

    /

    返回文章
    返回