Fault Diagnosis Method for Analog Circuits Based on Matrix Perturbation Analysis
-
摘要: 为了实现模拟电路的故障检测、故障定位和参数辨识的一体化处理,便于工程实施和降低故障诊断成本,提出一种基于矩阵扰动理论的模拟电路故障诊断与参数辨识方法。首先,对故障电路的采样时间序列值进行曲线拟合,得到电路故障相位偏移信息,并作为一个故障特征;其次,将采样序列构成一个方阵,求解该方阵的迹作为另一个故障特征;第三,以相位偏移信息和响应矩阵的迹随被诊断器件参数的变化而变化的对应关系为基础,结合两个故障特征,建立故障模型;最后,通过对两个国际标准电路诊断的实验验证结果显示,该方法故障定位准确率在98.5%~100%范围内,故障参数辨识误差在-1.2%~1.72%范围内。Abstract: To integrate the fault detection, fault localization and parameter identification of analog circuits in one system and reduce the cost and facilitate the engineering implementation of fault diagnosis, an fault diagnosis and parameter identification method for analog circuits based on matrix perturbation theory was proposed. First, curve fitting for the sampled time series of the faulty circuit was conducted, and the phase deviation of the circuit was treated as one fault signature . Then, a matrix was built using the sampled time series, and the trace of this matrix was used as the other fault signature. Finally, the phase deviation and trace were used as joint fault signatures, and the fault diagnosis model was established according to the correspondence between the changes of the fault signatures and the fault device parameter variations. The experimental results of two international standard circuits show that the accuracy of fault location ranges from 98.5% to 100% and the error of fault parameter identification is in the range of -1.2% to 1.72%.
-
Key words:
- analog circuit /
- matrix perturbation /
- fault diagnosis /
- parameter identification /
- fault model
-
LI F, WOO P Y. Fault detection for linear analog IC-the method of short-circuits admittance parameters[J]. IEEE Transactions on Circuits and Systems I Fundamental Theory and Applications, 2002, 49(1): 105-108. JEONGJIN R, ABRAHAM J A. Subband filtering for time and frequency analysis of mixed-signal circuit testing[J]. IEEE Transactions on Instrumentation and Measurement, 2004, 53(2): 602-611. TADEUSIEWICZ M, HALGAS S, KORZYBSKI M. An algorithm for soft fault diagnosis of linear and nonlinear circuits[J]. IEEE Transactions on Circuits and Systems I Fundamental Theory and Applications, 2002, 49(11): 1648-1653. AMINIAN F, AMINIAN M, COLLINS H W. Analog fault diagnosis of actual circuits using neural networks[J]. IEEE Transactions on Instrumentation and Measurement, 2002, 51(3): 544-550. 赵林海,穆建成. 基于AOK-TFR的轨道电路故障诊断方法[J]. 西南交通大学学报,2011,46(1): 84-91. ZHAO Linhai, MU Jiancheng. Fault diagnosis method for jointless track circuit based on AOK-TFR[J]. Journal of Southwest Jiaotong University, 2011, 46(1): 84-91. 肖娈,王太勇,秦旭达. 基于技术的远程虚拟设备故障诊断系统[J]. 西南交通大学学报,2003,38(5): 566-569. XIAO Luan, WANG Taiyong, QIN Xuda. Remote virtual fault diagnosis system of equipment based on COM[J]. Journal of Southwest Jiaotong University, 2003, 38(5): 566-569. YANG Chenglin, TIAN Shulin, LONG Bing, et al. Methods of handling the tolerance and test-point selection problem for analog-circuit fault diagnosis[J]. IEEE Transactions on Instrumentation and Measurement, 2011, 60(1): 176-185. AMINIAN M, AMINIAN F. Neural-network based analog-circuit fault diagnosis using wavelet transform as preprocessor[J]. IEEE Transactions on Circuits and Systems II Analog and Digital Signal Processing, 2000, 47(2): 151-155. YANG C, TIAN S, LIU Z, et al. Fault modeling on complex plane and tolerance handling methods for analog circuits[J]. IEEE Transactions on Instrumentation and Measurement, 2013, 62(11): 2730-2738. 戴小文,钟桂英,吴浩中. 小波变换在摆式列车倾摆系统故障诊断中的应用[J]. 西南交通大学学报,2000,35(6): 651-655. DAI Xiaowen, ZHONG Guiying, WU Haozhong. Application of the wavelet transform to the failure diagnosis of tilting trains[J]. Journal of Southwest Jiaotong University, 2000, 35(6): 651-655. 张朝龙,何怡刚,袁莉芬. 基于核熵成分分析的模拟电路早期故障诊断方法[J]. 仪器仪表学报,2015,36(3): 675-683. ZHANG Chaolong, HE Yigang, YUAN Lifen. Approach for analog circuit incipient fault diagnosis based on KECA[J]. Chinese Journal of Scientific Instrument, 2015, 36(3): 675-68. 马超,陈西宏. 基于支持向量机属性约简集成的模拟电路故障诊断[J]. 仪器仪表学报,2011,32(3): 660-666. MA Chao, CHEN Xihong. Analog circuit fault diagnosis based on attribute reduct ensemble of support vector machine[J]. Chinese Journal of Scientific Instrument, 2011, 32(3): 660-666. TADEUSIEWICZ M, HALGAS S. A new approach to multiple soft fault diagnosis of analog BJT and CMOS circuits[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64(10): 2688-2695. WANG Kangtai, WANG Ning. A novel RNA genetic algorithm for parameter estimation of dynamic systems[J]. Chemical Engineering Research and Design, 2010, 88(1): 1485-1493. DIONYSIOS C, SCOTT D, BRIAN T. Genetic algorithm-based parameter identification of a hysteretic brushless exciter model[J]. IEEE Transactions on Energy Conversion, 2006, 21(1): 148-154. 滕峰成,林晓乐,张崇兴. 基于非线性GA算法的动态P模型的参数辨识与验证[J]. 仪器仪表学报,2015,36(5): 1124-1130. TENG Fengcheng, LIN Xiaole, ZHANG Congxing. Parameter identification and verification of dynamic P model based on nonlinear genetic algorithm[J]. Chinese Journal of Scientific Instrument, 2015, 36(5): 1124-1130. WILKINSON J H. The algebraic eigenvalue problem[M]. Oxford: Clarendon, 1988: 62-64. GRIFFITHS D J. Introduction to quantum mechanics[M]. New Jersey: Prentice Hall, 2004: 96-98. KAMINSKA B, ARABI K, BELL I. Analog and mixed-signal benchmark circuits: first release[C]//in Proc. ITC. Washington D C: Vpper Saddle River, 1997: 183-190.Z24:Z31
点击查看大图
计量
- 文章访问数: 525
- HTML全文浏览量: 69
- PDF下载量: 104
- 被引次数: 0