Defect Detection of Solder Balls Based on Multi-Physical Field
-
摘要: 为检测倒装焊芯片在生产和服役过程中产生的焊球缺陷,提出了基于电、磁、热多物理场的脉冲涡流热成像检测方法。该方法利用有限元COMSOL软件建立焊球电磁感应热模型,并引入常见的焊球缺陷(空洞和裂纹)进行仿真;提取焊球顶端的温度分布,分析不同缺陷焊球的传热性能并进行缺陷识别;仿真分析裂纹和空洞尺寸变化对温度分布的影响,定量分析焊球缺陷。结果表明:在加热结束时,裂纹(长200 m,高20 m)焊球、空洞(直径150 m)焊球与正常焊球的顶端温度差为一负一正,根据焊球顶端温度的分布特征可以区别不同缺陷焊球,对于裂纹焊球,当裂纹位置越靠近焊球顶端,温度值越高;对于空洞焊球,空洞半径从35 m增大到75 m时,焊球顶端温度呈线性增加。Abstract: A pulsed eddy current thermal imaging method that is based on a coupled electric, magnetic, and thermal physical field was proposed for defect detection of solder balls in the production and service process of flip chips. In this method, an electromagnetic-thermal model for solder balls was established using the finite element software COMSOL. Through this model, temperature distributions on the top surface of solder balls were extracted to analyze their thermal conduction properties and identify their defects (i.e., voids and cracks). The effects of defect size (crack length or width and void radius) on the temperature distribution were discussed for quantitative analysis of solder ball defects. Simulation results show that at the end of heating, the solder ball with a crack of length 200 m and height 20 m has a higher surface temperature than the normal solder ball, while the solder ball with a void of diameter 150 m has a lower surface temperature. The surface temperature rises when there exists a crack close to the top surface of the ball, but increases linearly for voided solder balls when the void radius increases from 35 to 75 m. Therefore, solder balls with different defects can be identified according to their surface temperature distribution.
-
Key words:
- flip chip /
- infrared thermography /
- solder ball /
- multi-physics /
- defect detection
-
贾松良,胡涛,朱继光. 倒装焊芯片的焊球制作[J]. 半导体技术,2000,25(5): 25-28. JIA Songliang, HU Tao, ZHU Jiguang. Fabrication technology of bumps for flip chip[J]. Semiconductor Technology, 2000, 25(5): 25-28. 王立成,丁汉,熊有伦. 倒装焊芯片中的非接触检测技术[J]. 机械与电子,2004,4(5): 45-49. WANG Licheng, DING Han, XIONG Youlun. An overview of non destructive inspection in flip chip packaging [J]. Machinery and Electronics, 2004,4(5): 45-49. 谭琳,汪道辉,张江. 自动光学检测技术在芯片封装中的应用[J]. 微计算机信息,2007,23(2): 66-68. TAN Lin, WANG Daohui, ZHANG Jiang. Automated optical inspection in chip packaging [J]. Microcomputer Information, 2007, 23(2): 66-68. SASSOV A, LUYPAERT F. X-ray digital microlaminography for BGA and flip chip inspection[C]//X ray Microscopy: Proceedings of Sixth International Conference. [S.I.]: American Institute of Physics, 2000: 239-244. SCHICK A, KEDZIORA M. Inspection and process evaluation for flip chip bumping and CSP by scanning 3D confocal microscopy[C]//2002 8th International Advanced Packaging Materials Symposium. Stone Mountain: IEEE Computer Society, 2002: 116-119. WEI Tang, BO Jing, HUANG Yifeng, et al. Defect detection for solder joints with spectrum kurtosis and empirical mode decomposition [C]//Prognostics and System Health Management Conference. Beijing: [s.n.], 2015: 1-5. YOON J, LEE J, KIM B, et al. An automated detection method of solder joint defects using 3D computed tomography for ic package inspection [C]//Software and Network Engineering, 2011 First ACIS International Symposium on Software and Network Engineering. Seoul: [s.n.], 2011: 3-6. 李乐,陈忠,张宪民. 基于微焦点X射线BGA焊点缺陷检测[J]. 电子设计工程,2014(12): 164-166,170. LI Le, CHEN Zhong, ZHANG Xianmin. Defect detection of BGA solder joint based on microfocus X-ray[J]. Electronic Design Engineering, 2014(12): 164-166, 170. GAO Bi, BAI Libin, WOO W L. Thermography pattern analysis and separation[J]. Applied Physics Letters, 2014, 104: 251902-5. HE Yunze, PAN Mengchun, LUO Feilu. Pulsed eddy current imaging and frequency spectrum analysis for hidden defect nondestructive testing and evaluation[J]. NDT E International, 2011, 44(4): 344-352. CHENG Liang, TIAN Guiyun. Surface crack detection for carbon fiber reinforced plastic materials using pulsed eddy current thermography[J]. IEEE Sensor, 2011, 11(12): 3261-3268. JOHN W, TIAN Guiyun, ILHAM M, et al. PEC thermography for imaging multiple cracks form rolling contact fatigue[J]. NDT E International, 2011, 44(6): 505-512. ZENG Zhi, TAO Ning, Feng Lichun, et al. Specified value based defect depth prediction using pulsed thermography[J]. Applied Physics Letters, 2012, 112(23): 1-6. HUTH S, BREITENSTEIN O, HUBER A, et al. Localization of gate oxide integrity defects in silicon metal-oxide-semiconductor structures with lock-in IR thermography[J]. Journal of Applied Physics, 2000, 88(7): 4000-4003. JOHN W, TIAN Guiyun, ILHAM Z A, et al. Modeling and evaluation of eddy current stimulated thermography [J]. Non-Destructive Testing and Evaluation, 2010, 25(3): 205-218. 潘孟春,何赟泽. 涡流热成像检测技术[M]. 北京:国防工业出版社,2013: 60-61. LI Mingyu, XU Hongbo, RICKY Shiwei, et al. Eddy current induced heating for the solder reflow of area array packages[J]. IEEE Transactions on Advanced Packaging, 2008, 31(2): 399-403. HSIAO H Y, LIANG S W, KU M F, et al. Direct measurement of hotspot temperature in flip-chip solder joints under current stressing using infrared microscopy[J]. Journal of Applied Physics, 2008, 104(3): 1-6.(中文编辑:秦 瑜 英文编辑:兰俊思)
点击查看大图
计量
- 文章访问数: 531
- HTML全文浏览量: 59
- PDF下载量: 200
- 被引次数: 0