• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于三维光影模型的公路路面裂缝自动识别算法

阳恩慧 张傲南 丁世海 王郴平

阳恩慧, 张傲南, 丁世海, 王郴平. 基于三维光影模型的公路路面裂缝自动识别算法[J]. 西南交通大学学报, 2017, 30(2): 288-294. doi: 10.3969/j.issn.0258-2724.2017.02.011
引用本文: 阳恩慧, 张傲南, 丁世海, 王郴平. 基于三维光影模型的公路路面裂缝自动识别算法[J]. 西南交通大学学报, 2017, 30(2): 288-294. doi: 10.3969/j.issn.0258-2724.2017.02.011
YANG Enhui, ZHANG Aonan, DING Shihai, WANG Kelvin C. P.. Automatic Detection Method for Highway Pavement Cracking Based on the 3D Shadow Modeling[J]. Journal of Southwest Jiaotong University, 2017, 30(2): 288-294. doi: 10.3969/j.issn.0258-2724.2017.02.011
Citation: YANG Enhui, ZHANG Aonan, DING Shihai, WANG Kelvin C. P.. Automatic Detection Method for Highway Pavement Cracking Based on the 3D Shadow Modeling[J]. Journal of Southwest Jiaotong University, 2017, 30(2): 288-294. doi: 10.3969/j.issn.0258-2724.2017.02.011

基于三维光影模型的公路路面裂缝自动识别算法

doi: 10.3969/j.issn.0258-2724.2017.02.011
基金项目: 

国家自然科学基金资助项目(51308477,U1534203)

中央高校基本科研业务费专项资金资助项目(2682015CX091)

详细信息
    作者简介:

    阳恩慧(1982-),男,副教授,博士,研究方向为路面微观材料性能与伤损识别,E-mail: ehyang@home.swjtu.edu.cn

Automatic Detection Method for Highway Pavement Cracking Based on the 3D Shadow Modeling

  • 摘要: 针对公路路面裂缝的自动化三维图像识别技术的研究热点问题,为有效提高裂缝识别算法的准确率与可靠性,基于三维图像提出利用三维光影模型(3D Shadow Modeling)来实现公路路面表面裂缝的自动识别新方法。该方法利用裂缝区高度低于周边高度的特性,通过三维光影模型将裂缝投影为阴影区,继而通过对阴影的形态分析来识别裂缝,并采用连通域分析与线性形态分析方法,消除图像噪声。研究结果表明,采用本文提出的裂缝自动识别算法可以达到92.93%的路面裂缝自动识别准确率。

     

  • KELVIN C P W, ROBERT P E. Investigation of image archiving for pavement surface distress surface distress survey[R]. Fayetteville: Mack-Blackwell Transportation Center, University of Arkansas, 1999.
    OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man and Cybernetics, 1979, 9(1): 62-66.
    CANNY J. A computational approach to edge detection[J]. Pattern Analysis and Machine Intelligence, 1986, 8(6): 679-698.
    彭博,蒋阳升,韩世凡,等. 路面裂缝图像自动识别算法综述[J]. 公路交通科技,2014,31(7): 19-25. PENG Bo, JIANG Yangsheng, HAN Shifan, et al. A review of automatic pavement crack image recognition algorithms[J]. Journal of Highway and Transportation Research and Development, 2014, 31(7): 19-25.
    张娟,沙爱民,高怀钢, 等. 基于数字图像处理的路面裂缝自动识别与评价系统[J]. 长安大学学报:自然科学版,2004,24(2): 18-22. ZHANG Juan, SHA Aimin, GAO Huaigang, et al. Automatic pavement crack recognition and evaluation system based on digital image processing[J]. Journal of Chang'an University: Natural Science Edition, 2004, 24(2): 18-22.
    王华,朱宁,王祁. 应用计盒维数方法的路面裂缝图像分割[J]. 哈尔滨工业大学学报,2007,39(1): 142-144. WANG Hua, ZHU Ning, WANG Qi. Segmentation of pavement cracks using differential box-counting spproach[J]. Journal of Harbin Institute of Technology, 2007, 39(1): 142-144.
    MARTIN D R, FOWLKES C C, MALIK J. Learning to detect natural image boundaries using local brightness, color, and texture cues[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(5): 530-549.
    STAHL J S, WANG S. Edge grouping combining boundary and region information[J]. IEEE Transactions on Image Processing, 2007, 16(10): 2590-2606.
    SHU Zhibiao, GUO Yanqing. Algorithm on contourlet domain in detection of road cracks for pavement images[J]. Journal of Algorithms Computational Technology, 2013, 7(1): 15-26.
    SAART,TALVIK O. Automatic asphalt pavement crack detection and classification using neural networks[C]//Proceedings of the 12th Biennial Baltic Electronics Conference.Tallinn: IEEE, 2010: 345-348.
    KELVIN C P, WANG J. Elements of automated survey of pavements and a 3D methodology[J]. Journal of Modern Transportation, 2011(19): 51-57.
    WANG K C P, LI Q, GONG W. Wavelet-based pavement distress image edge detection with trous algorithm[R]. Washington D C: TRB, National Research Council, 2007.
    彭博,WANG K C P,陈成,等. 基于各向异性测度的路面三维图像裂缝识别[J]. 西南交通大学学报,2014,49(5): 888-895. PENG Bo, WANG K C P, CHEN Cheng, et al. 3D pavement crack Image detection based on anisotropy measure[J]. Journal of Southwest Jiaotong University, 2014, 49(5): 888-895.
    GRAMA A, GUPTA A, KARYPIS G, et al. Introduction to parallel computing[M]. 2nd ed. Boston: Addison Wesley, 2003: 209-210.
    DAVIS J, GOADRICH M. The relationship between precision-recall and ROC curves[C]//Proceeding of the 23rd International Conference on Machine Learning. Pittsburgh: ACM, 2006: 233-240.
    FAWCETT T. An introduction to ROC analysis[J]. Pattern Recognition Letters, 2006, 27(8): 861-874.
    DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multi-objective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.(中文编辑:唐 晴 英文编辑:周 尧)
  • 加载中
计量
  • 文章访问数:  592
  • HTML全文浏览量:  89
  • PDF下载量:  276
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-21
  • 刊出日期:  2017-04-25

目录

    /

    返回文章
    返回