Research on Nonlinear Characteristics of Air Traffic Flows on Converging Air Routes
-
摘要: 针对空中交通流仿真、预测与控制工作中普遍需要空中交通流时空动态基本特征的问题,从混沌与分形角度对交汇航路交通流量时间序列的非线性特征进行了研究.首先,提出了一种基于航路网络结构的交通流识别方法,构建了不同时间尺度下交通流量时间序列;其次,在相空间重构的基础上,利用最大Lyapunov指数定量判断了交通流中混沌特征的存在,并利用递归图分析了不同时间尺度下交通流量时间序列的混沌特征;最后,通过计算关联维数,研究了不同时间尺度下流量时间序列的分形特征.研究结果表明:不同时间尺度下交通流量时间序列均具有混沌特征;当时间尺度为5 min时,流量时间序列的混沌特征最为显著;随着时间尺度增大,流量时间序列的随机性增强,且对系统复杂性的表现能力变弱.Abstract: Insights into the temporal and spatial characteristics of air traffic flow is the prerequisite of air traffic flow simulation, prediction and control. Nonlinear characteristics of traffic flow time series on converging air routes were explored from the chaotic and fractal views. First, a traffic flow identification method based on air route network structure was proposed, and air traffic flow time series were constructed on different time scales. Then, based on the reconstruction of phase space, chaos existing in air traffic flow was quantitatively analyzed by the max Lyapunov exponent, and the chaotic characteristics of traffic flow time series on different time scales were analyzed by recurrent maps. Finally, the fractal characteristics of traffic flow time series on different time scales were analyzed using the correlation dimension. The results show that chaos does exist in traffic flow time series on different time scales. The chaotic characteristic of traffic flow time series is the most obvious at the time scale of 5 min. With time scales increasing, the randomness of air traffic flow time series increases, and the ability to show the system complexity becomes weak.
-
Key words:
- air traffic flow /
- nonlinear time series /
- data mining /
- chaos /
- fractals
-
MUELLER E R, CHATTERJI G B. Analysis of aircraft arrival and departure delay characteristics[C]//AIAA's Aircraft Technology, Integration, and Operations (ATIO) 2002 Technical. Los Angeles:[s.n.], 2002:1-14. MENON P K, SWERIDUK G D, LAM T, et al. Computer-aided eulerian air traffic flow modeling and predictive control[J]. Journal of Guidance, Control and Dynamics, 2006, 29(1):12-19. TANDALE M D, SENGUPTA P, MENON P K, et al. Queuing network models of the national airspace system[C]//The 26th Congress of International Council of the Aeronautical Science (ICAS). Anchorage:[s.n.], 2008:1-14. 张洪海,胡勇,杨磊,等. 多机场终端区微观交通流建模与仿真分析[J]. 西南交通大学学报,2015,50(2):368-374. ZHANG Honghai, HU Yong, YANG Lei, et al. Modeling and simulation analysis of microscopic traffic flow in multi-airport terminal airspace[J]. Journal of Southwest Jiaotong University, 2015, 50(2):368-374. ZHANG Honghai, XU Yan, YANG Lei, et al. Macroscopic model and simulation analysis of air traffic flow in airport terminal area[J]. Discrete Dynamics in Nature and Society, 2014, 2014(6):1-15. LI Shanmei, XU Xiaohao, MENG Linghang. Flight conflict forecasting based on chaotic time series[J]. Transactions of Nanjing University of Aeronautics Astronautics, 2012, 29(4):388-394. CONG Wei, HU Minghua. Chaotic characteristic analysis of air traffic system[J].Transactions of Nanjing University of Aeronautics Astronautics, 2014, 31(6):636-642. 王超,韩邦村,王飞. 基于轨迹谱聚类的终端区盛行交通流识别方法[J]. 西南交通大学学报,2014,49(3):546-552. WANG Chao, HAN Bangcun, WANG Fei. Identification of prevalent air traffic flow in terminal airspace based on trajectory spectral clustering[J]. Journal of Southwest Jiaotong University, 2014, 49(3):546-552. FENG Yulin, LAWRENCE W L. Traffic flow analysis with different time scales[J]. Journal of the Eastern Asia Society for Transportation Studies, 2005, 6(9):1624-1636. KANTZ H, SCHREIBER T. Nonlinear time series analysis second edition[M]. Cambridge:Cambridge University Press, 2003:30-104. 刘佳. 基于分形理论的短时交通流预测研究[D]. 北京:北京交通大学,2007. KENNEL M B, BROWN R, ABARBANEL H. Determining embedding dimension for phase-space reconstruction using a geometrical construction[J]. Physical Review A, 1992, 45(6):3405-3411. 卢宇,陈宇红,贺国光. 应用改进型小数据量法计算交通流的最大Lyapunov指数[J]. 系统工程理论与实践,2007,27(1):85-90. LU Yu, CHEN Yuhong, HE Guoguang. The computing of maximum Lyapunov exponent in traffic flow applying the improved small data method[J]. Systems Engineering-Theory Practice, 2007, 27(1):85-90. 张勇. 交通流的非线性分析、预测和控制[D]. 北京:北京交通大学,2011. 李新杰,胡铁松,董秀明. 递归图法在径流时间序列非线性分析中的应用[J]. 武汉大学学报:工学版,2013,46(1):62-66. LI Xinjie, HU Tiesong, DONG Xiuming. Application of recurrence plots to nonlinear analysis of runoff time series[J]. Engineering Journal of Wuhan University. 2013, 46(1):62-66.
点击查看大图
计量
- 文章访问数: 632
- HTML全文浏览量: 77
- PDF下载量: 263
- 被引次数: 0