Self-Recovery E-evidence Image Watermarking Algorithm Based on Binary features of Important Blocks
-
摘要: 现有高性能自恢复水印算法多是针对自然图像设计,水印容量较大且不利于文字等信息的恢复.为解决这一问题,在兼顾水印嵌入容量和篡改凭证图像恢复质量的基础上,提出了一种适用于电子凭证图像真实性认证的自恢复水印算法.该算法首先根据电子凭证图像特性,将图像块划分为重要块、非重要块和空白块3类,并对其进行分类编码;其次,为保证类型码的正确性,将所有图像块类型码置乱,采用RS编码后生成部分恢复水印信息,将其平均嵌入在所有图像块中;再次,对重要块采用二值化方法生成恢复水印信息,并依次嵌入在非重要块或空白块的最低有效位;最后,通过7张具体电子凭证图像,对比给出了本文算法与现有同类变容量文献算法的性能.研究结果表明,本文算法采用分类编码并仅对重要块生成恢复水印信息,在不降低算法篡改检测和篡改恢复性能的条件下,使水印嵌入容量从对比文献的1.73和2.99降低至0.64,含水印凭证图像的峰值信噪比分别高出对比文献8 dB和23 dB.Abstract: Existing self-recovery watermarking algorithms are generally designed for natural images, which have a large watermark embedding capacity and cannot clearly recover the text information. To deal with this, a self-recovery watermarking algorithm for E-evidence image authentication was proposed, which can reach a balance between watermark embedding capacity and recovery quality. Firstly, according to the characteristics of an E-evidence image, all image blocks in the test E-evidence image were categorized into three types:important block, unimportant one and blank one. Then, to ensure the correctness of the type code, the type code is permutated and encoded by RS coding to generate a partial-recovery watermark that is randomly embedded in all blocks. At the same time, another recovery watermark is generated by coding the binary features of important blocks and randomly embedded in the least significant bit of unimportant or blank blocks based on secret key. At last, the performances of the proposed scheme and the alterable-capacity watermarking algorithms were compared by using seven E-evidence images. Results show that the watermark embedding capacity of the proposed scheme is reduced to 0.64 bit per pixel, compared with two literature results of 1.73 and 2.99, and the peak signal to noise ratio (PSNR) of the watermarked E-evidence image by the proposed scheme is about 8 dB and 23 dB higher than those obtained from literature, while the performance of tamper detection and tamper recovery is not worsened. This is mainly because the proposed scheme adopts classification code and only encodes the important blocks.
-
Key words:
- E-evidence /
- digital image /
- self-recovery watermarking /
- binary feature
-
耿建新,洪图. 会计原始凭证无纸化问题探讨[J]. 会计研究,2011(8):9-15. GENG Jianxin, HONG Tu. Research about accounting original documents paperless problems[J]. Accounting Research, 2011(8):9-15. 崔屏. 电子文件凭证性溯源及内涵研究[J]. 档案与建设,2013(9):4-7. CUI Ping. Research on the origin and connotation of evidential attribute of electronic record[J]. Archives Construction, 2013(9):4-7. 张继东. 可信电子凭证技术在发票防伪中的应用研究[D]. 北京:北京工业大学,2011. 薛四新,张桂刚,李超. 电子文件凭证性保障方法研究[J]. 档案学研究,2013(4):51-54. XUE Sixin, ZHANG Guigang, LI Chao. An effective protection method for electronic records evidence[J]. Archives Science Study, 2013(4):51-54. 崔尚勇. 电子发票的防伪技术应用[J]. 信息与电脑,2013(8):167-168 CUI Shangyong. Application of security technology of electronic invoices[J]. Chinese Computer and Communication, 2013(8):167-168. 和红杰,陈帆,尹忠科. 基于状态参数的安全数码相机模型[J]. 西南交通大学学报,2013,48(3):1-7. HE Hongjie, CHEN Fan, YIN Zhongke. A new secure digital camera model based on state parameter[J]. Journal of Southwest Jiaotong University, 2013, 48(3):1-7. HE H J, CHEN F. Performance analysis of a block-neighborhood-based self-recovery fragile watermarking scheme[J]. IEEE Trans. on Information Forensics and Security, 2012, 7(1):185-196. LIN P, HSIEH P, HUANG P. A hierarchical digital watermarking method for image tamper detection and recovery[J]. Pattern Recognition, 2005, 38(12):2519-2529. LEE T Y, LIN S. Dual watermark for image tamper detection and recovery[J]. Pattern Recognition, 2008, 41(1):3497-3506. ZHANG X, QIAN Z, REN Y, et al. Watermarking with flexible self-recovery quality based on compressive sensing and compositivere construction[J]. IEEE Trans. on Information Forensics and Security, 2011, 6(4):1223-1232. KORUS P, DZIECH A. Adaptive self-embedding scheme with controlled reconstruction performance[J]. IEEE Trans. Inf. Forensics Secur, 2014, 9(2):169-181. SARRESHTEDARI S, AKHAEE M. A source-channel coding approach to digital image protection and self-recovery[J]. IEEE Trans. on Image Processing, 2015, 24(7):2266-2277. QIN C, CHANG C, CHEN K. Adaptive self-recovery for tampered images based on VQ indexing and inpainting[J]. Signal Processing, 2013, 93(4):933-946. QIAN Z, FENG G, ZHANG X. Image self-embedding with high-quality restoration capability[J]. Digital Signal Processing, 2011, 21(2):278-286. 郭亮,高宏力,黄海凤,等. 基于压缩感知理论的时变信号压缩技术[J]. 西南交通大学学报,2015,50(3):511-516. GUO Liang, GAO Hongli, HUANG Haifeng, et al. Time-varying signal compression technology based on compressed sensing[J]. Journal of Southwest Jiaotong University, 2015, 50(3):511-516. 王李冬,张引,吕明琪. 基于词组主题建模的文本语义压缩算法[J]. 西南交通大学学报,2015,50(4):755-763. WANG Lidong, ZHANG Yin, L Mingqi. Document semantic compression algorithm based on phrase topic model[J]. Journal of Southwest Jiaotong University, 2015, 50(4):755-763. HUO Y Y, HE H J, CHEN F. Alterable-capacity fragile watermarking scheme with restoration capability[J]. Optics Communications, 285(2012):1759-1766. CHEN F, HE H J, TAI H M, et al. Chaos-based self-embedding fragile watermarking with flexible watermark pay[J]. Multimed Tools Appl., 2014, 72:41-56. 陈帆,和红杰,王宏霞. 用于图像认证的变容量恢复水印算法[J]. 计算机学报,2012,35(1):154-162. CHEN Fan, HE Hongjie, WANG Hongxia. Variable-payload self-recovery watermarking scheme for digital image[J]. Chinese Journal of Computers, 2012, 35(1):154-162. 石慧,李明楚. 安全的变容量恢复水印方案[J]. 计算机研究与发展,2014,51(8):1715-1726. SHI Hui, LI Mingchu. Safe variable-capacity self-recovery watermarking scheme[J]. Journal of Computer Research and Development, 2014, 51(8):1715-1726.
点击查看大图
计量
- 文章访问数: 493
- HTML全文浏览量: 62
- PDF下载量: 332
- 被引次数: 0