• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

结构动力学中的广义多步显式积分算法

杨超 朱涛 杨冰 阳光武 鲁连涛 肖守讷

杨超, 朱涛, 杨冰, 阳光武, 鲁连涛, 肖守讷. 结构动力学中的广义多步显式积分算法[J]. 西南交通大学学报, 2017, 30(1): 133-140. doi: 10.3969/j.issn.0258-2724.2017.01.019
引用本文: 杨超, 朱涛, 杨冰, 阳光武, 鲁连涛, 肖守讷. 结构动力学中的广义多步显式积分算法[J]. 西南交通大学学报, 2017, 30(1): 133-140. doi: 10.3969/j.issn.0258-2724.2017.01.019
YANG Chao, ZHU Tao, YANG Bing, YANG Guangwu, LU Liantao, XIAO Shoune. Generalized Multi-step Explicit Integration Method in Structural Dynamics[J]. Journal of Southwest Jiaotong University, 2017, 30(1): 133-140. doi: 10.3969/j.issn.0258-2724.2017.01.019
Citation: YANG Chao, ZHU Tao, YANG Bing, YANG Guangwu, LU Liantao, XIAO Shoune. Generalized Multi-step Explicit Integration Method in Structural Dynamics[J]. Journal of Southwest Jiaotong University, 2017, 30(1): 133-140. doi: 10.3969/j.issn.0258-2724.2017.01.019

结构动力学中的广义多步显式积分算法

doi: 10.3969/j.issn.0258-2724.2017.01.019
基金项目: 

国家自然科学基金资助项目(51275432,51405402,51505390)

国家重点研发计划资助项目(2016YFB1200403,2016YFB1200404)

详细信息
    作者简介:

    杨超(1988-),男,博士,研究方向为列车碰撞动力学,E-mail:yangchaosky@foxmail.com

    通讯作者:

    肖守讷(1964-),男,研究员,研究方向为机车车辆设计及理论,E-mail:snxiao@home.swjtu.edu.cn

Generalized Multi-step Explicit Integration Method in Structural Dynamics

  • 摘要: 为了开发新的时间积分算法,通过对独立变量加速度的加权,提出了广义多步显式积分算法(GMEM).首先,在加速度显式法的基础上给出了通用的积分格式;其次,分析了所提算法的稳定性、数值耗散、数值色散和精度;最后,通过2个算例对3个广义多步显式积分算法(GMEM1、GMEM2和GMEM3-2)以及HHT-法和Newmark法进行了对比分析.分析结果表明:本文所提算法是条件稳定的,在无阻尼系统中谱半径恒等于1;3步广义多步显式法最高具有3阶精度,在无阻尼系统中不存在数值耗散;GMEM2的均方根误差约为Newmark法的1/2,约为GMEM3-2的1.8倍.

     

  • 张雄,王天舒. 计算动力学[M]. 北京:清华大学出版社,2007:147-155.
    HOUBOLT J C. A recurrence matrix solution for the dynamic response of elastic aircraft[J]. Journal of Aeronautical Sciences, 1950(17):540-550.
    PARK K C. An improved stiffly stable method for direct integration of nonlinear structural dynamic equations[J]. Journal of Applied Mechanics, 1975, 42(2):464-470.
    邵慧萍,蔡承文. 结构动力学方程数值积分的三参数算法[J]. 应用力学学报,1988,5(4):76-81. SHAO Huiping, CAI Chengwen. A three parameters algorithm for numerical integration of structural dynamic equations[J]. Chinese Journal of Applied Mechanics, 1988, 5(4):76-81.
    LEONTIEV V A. Extension of LMS formulations for L-stable optimal integration methods with U0-V0 overshoot properties in structural dynamics:the level-symmetric (LS) integration methods[J]. International Journal for Numerical Methods in Engineering, 2007, 71(13):1598-1632.
    CHUNG J, HULBERT G M. A time integration algorithm for structural dynamics with improved numerical dissipation:the generalized-method[J]. Journal of Applied Mechanics, 1993, 60(2):371-375.
    ZHAI W M. Two simple fast integration methods for large-scale dynamic problems in engineering[J]. International Journal for Numerical in Engineering, 1996, 39:4199-4214.
    ZHAI W M, WANG K Y, CAI C B. Fundamentals of vehicle-track coupled dynamics[J]. Vehicle System Dynamics, 2009, 47(11):1349-1376.
    翟婉明,夏禾. 列车-轨道-桥梁动力相互作用理论与工程应用[M]. 北京:科学出版社,2011:107-124.
    ZHONG W X, WILLIAMS F W. A precise time step integration method[J]. Journal of Mechanical Engineering Science, 1994, 208:427-430.
    吕和祥,于洪洁,裘春航. 精细积分的非线性动力学积分方程及其解法[J]. 固体力学学报,2001,22(3):303-308. L Hexiang, YU Hongjie, QIU Chunhang. An integral equation of nonlinear dynamics and its solution method[J]. Acta Mechanica Solida Sinica, 2001, 22(3):303-308.
    CHANG S Y. An explicit method with improved stability property[J]. International Journal for Numerical Methods in Engineering, 2009, 77(8):1100-1120.
    CHANG S Y. A family of noniterative integration methods with desired numerical dissipation[J]. International Journal for Numerical Methods in Engineering, 2014, 100(1):62-86.
    CHANG S Y. A new family of explicit methods for linear structural dynamics[J]. Computers Structures, 2010, 88(11/12):755-772.
    杨超,肖守讷,鲁连涛. 基于双步长的显式积分算法[J]. 振动与冲击,2015,34(1):29-32. YANG Chao, XIAO Shoune, LU Liantao. Explicit integration algorithm based on double time steps[J]. Journal of Vibration and Shock, 2015, 34(1):29-32.
    杨超,肖守讷,阳光武,等. 一类非耗散的显式时间积分方法[J]. 振动工程学报,2015,28(3):441-448. YANG Chao, XIAO Shoune, YANG Guangwu, et al. Non-dissipative explicit time integration methods of the same class[J]. Journal of Vibration Engineering, 2015, 28(3):441-448.
    侯博文,高亮,刘启宾. 重载车辆-道岔耦合动力特性及岔区加强研究[J]. 西南交通大学学报,2015,50(4):604-609. HOU Bowen, GAO Liang, LIU Qibin. Vehicle-turnout coupled dynamics and improvement measures for heavy haul lines[J]. Journal of Southwest Jiaotong University, 2015, 50(4):604-609.
  • 加载中
计量
  • 文章访问数:  531
  • HTML全文浏览量:  64
  • PDF下载量:  306
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-08
  • 刊出日期:  2017-02-25

目录

    /

    返回文章
    返回