Simulation of Airbag Ejection Acceleration Process on a Train Collision Testbed
-
摘要: 为了提高机车车辆碰撞试验台的驱动能量,提出气囊自增长可变边界,实现了高压气体在约束且不爆破条件下长距离弹射做功.基于控制体积法,利用LS-PrePost和LS-DYNA软件建立环形折叠气囊的弹射模型,在初始压缩和一定压力条件下,研究多节气囊的受压弹射过程和气囊构造特征对气囊弹射行为及能量的影响规律.研究结果表明:环形折叠气囊弹射模型能够反映气囊弹射加速方法的基本特性,气囊弹射加速持续并且稳定;气囊节数与弹射距离、能量输出大小和弹射试验台稳定性有关,气囊节数越多弹射作用距离越大、能量输出效果越显著,3节气囊弹射能量是1节气囊弹射能量的6倍;气囊节数越多气囊端部摆动量越大,但3节气囊弹射端部摆动量不超过7 mm,气囊弹射稳定性良好.Abstract: To solve the driving problem with great energy for a train collision testbed, the airbag with a self-growth variable boundary was proposed. The airbag with high-pressure gas can work effectively in a long distance under the condition of constraint and un-blasting. Based on the control volume method, an ejection model of the circlewise folding airbag was built using the simulation software LS-PrePost and LS-DYNA. The influence of the ejection process and structural features of multilevel airbags on the ejection behavior and energy was studied under conditions of initial compression and a certain pressure, respectively. The results show that the ejection model of the circlewise folding airbag can reflect the basic characteristics of the airbag ejection acceleration method, and the airbag ejection acceleration is stable and continuous. The number of airbags has a significant effect on the ejection distance, the output energy, and the stability of the airbag collision testbed. A more number of airbags means a greater ejection distance and more effective energy output. The energy of a three-airbag catapult is 6 times than that of a one-airbag catapult. The more the number of airbags is, the larger the lateral displacement of the airbag ends is. However, the swing displacement of a three-airbag catapult is not more than 7 mm, and hence a good stability can be ensured in the airbag ejection process.
-
Key words:
- high-speed trains /
- crashworthiness /
- ejection method /
- numerical simulation
-
张志新,肖守讷,阳光武,等. 高速列车乘员碰撞安全性研究[J]. 铁道学报,2013,35(10):24-31. ZHANG Zhixin, XIAO Shoune, YANG Guangwu, et al. Research on collision safety of high-speed train crews passengers[J]. Journal of the China Railway Society, 2013, 35(10):24-31. SCHOLES A, 侯卫星. 欧洲铁路碰撞技术的开发[J]. 国外铁道车辆,1998(1):23-26. SCHOLES A, HOU Weixing. The development of European railways collision technologies[J]. Foreign Rolling Stock, 1988(1):23-26. TYRELL D, 张钟浩. 机车抗碰撞能力改进研究[J]. 国外内燃机车,2002(3):23-31. TYRELL D, ZHANG Zhonghao. The locomotive collision resistance improvement research[J]. Foreign Diesel Locomotive, 2002(3):23-31. 雷成,肖守讷,罗世辉,等. 轨道车辆耐碰撞性研究进展[J]. 铁道学报,2013,35(1):31-39. LEI Cheng, XIAO Shoune, LUO Shihui, et al. State-of-the-art research development of rail vehicles crashworthiness[J]. Journal of the China Railway Society, 2013, 35(1):31-39. 肖守讷,张志新,阳光武,等. 列车碰撞仿真中钩缓装置模拟方法[J]. 西南交通大学学报,2014,49(5):831-836. XIAO Shoune, ZHANG Zhixin, YANG Guangwu, et al. Simulation method for couplers and buffers in train collision calculations[J]. Journal of Southwest Jiaotong University, 2014, 49(5):831-836. 丁叁叁,李强,卢毓江,等. 防爬吸能装置的碰撞动力学性能[J]. 西南交通大学学报,2015,50(8):732-739. DING Sansan, LI Qiang, LU Yujiang, et al. Dynamic performance of anti-climber device for trains in crash[J]. Journal of Southwest Jiaotong University, 2015, 50(4):732-739. 潘迪夫,王伟,李素康. 高速列车动模型试验弹射控制系统GA-BP神经网络建模研究[J]. 测控技术,2005,24(9):50-54. PAN Difu, WANG Wei, LI Sukang. Modeling rubber launching system of moving model rig for high-speed train using GA-BP neuron network[J]. Measurement Control Technology, 2005, 24(9):50-54. 王千叶. 轨道车辆撞击试验台气动弹射装置的设计研究[D]. 长沙:中南大学,2014. NIAN Rongxuan, SHU Shoutao. Good at many and expert in one-Fn303 weapon system[J]. Small Arms, 2004(11):26-28. YANG Liming. The new non-lethal weapon-OC tear pain ball launcher[J]. Small Arms, 2002(1):16-17. 王金贵. 气体炮原理及技术[M]. 北京:国防工业出版社,2001:40-54. LIN Junde, ZHANG Xiangrung, ZHU Yurong, et al. The technique of three-stage compressed-gas gun for hypervelocity impact[J]. Explosion and Shock Waves.2012, 32(5):483-489. 王永滨,姜毅,丁弘,等. 火星着陆器扶正展开动力学研究[J]. 航天返回与遥感,2015,36(1):24-32. WANG Yongbin, JIANG Yi, DING Hong, et al. Research on dynamics of mars lander rectifying and deployment[J]. Spacecraft Recvery Remote Sensing, 2015, 36(1):24-32. 李建阳,王红岩,芮强,等. 自充气式气囊缓冲特性试验研究[J]. 振动与冲击,2014,33(4):119-123. LI Jianyang, WANG Hongyan, RUI Qiang, et al. Tests for cushioning characteristics of a self-inflating airbag[J].Journal of Vibration and Shock, 2014, 33(4):119-123. SALAMA M, KUO C P, LOU M. Simulation of deployment dynamics of initatable structures[J]. AIAA J., 2000, 38(12):2277-2283.
点击查看大图
计量
- 文章访问数: 537
- HTML全文浏览量: 60
- PDF下载量: 325
- 被引次数: 0