• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

干模式下颗粒粘滑震动试验研究

崔德山 陈琼 项伟 刘清秉 王菁莪 黄伟

崔德山, 陈琼, 项伟, 刘清秉, 王菁莪, 黄伟. 干模式下颗粒粘滑震动试验研究[J]. 西南交通大学学报, 2019, 54(1): 82-90. doi: 10.3969/j.issn.0258-2724.20160615
引用本文: 崔德山, 陈琼, 项伟, 刘清秉, 王菁莪, 黄伟. 干模式下颗粒粘滑震动试验研究[J]. 西南交通大学学报, 2019, 54(1): 82-90. doi: 10.3969/j.issn.0258-2724.20160615
CUI Deshan, CHEN Qiong, XIANG Wei, LIU Qingbing, WANG Jing’e, HUANG Wei. Experimental Study of Stick-Slip Behaviour of Dry Granular Materials[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 82-90. doi: 10.3969/j.issn.0258-2724.20160615
Citation: CUI Deshan, CHEN Qiong, XIANG Wei, LIU Qingbing, WANG Jing’e, HUANG Wei. Experimental Study of Stick-Slip Behaviour of Dry Granular Materials[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 82-90. doi: 10.3969/j.issn.0258-2724.20160615

干模式下颗粒粘滑震动试验研究

doi: 10.3969/j.issn.0258-2724.20160615
基金项目: 国家自然科学基金资助项目(41772304,41602313);中央高校新青年教师科研启动基金资助项目(CUGL150817)
详细信息
    作者简介:

    崔德山(1981—),男,副教授,博士,研究方向为岩土体工程性质研究,E-mail: cuideshan@cug.edu.cn

  • 中图分类号: V221.3

Experimental Study of Stick-Slip Behaviour of Dry Granular Materials

  • 摘要: 为了研究浅源地震的诱发机制,基于室内三轴试验,对颗粒材料的粘滑震动特性进行了分析. 采用颗粒直径为0.6~0.8 mm的玻璃珠,在围压为30、60、100、200、400 kPa和600 kPa的条件下,以0.02 mm/min的轴向应变速率,开展干燥、密实玻璃珠的固结不排水三轴压缩试验,结果表明:试样偏应力主震和偏应力应变间距随着围压的增大而增大;除了初始压密阶段外,体变-应变曲线中所有体积的突然收缩均与粘滑震动有关;在30、60、100 kPa围压条件下,围压-应变曲线中出现较多尖而窄的波峰和波谷;在200、400 kPa和600 kPa围压条件下,围压-应变曲线中只有尖而窄的波谷;玻璃珠类颗粒材料发生粘滑震动过程中既有静摩擦也有转动摩擦;颗粒之间应力链的连续变形和破坏是引起颗粒粘滑震动的根本原因.

     

  • 图 1  Wille-Geotechnik静三轴仪

    Figure 1.  Triaxial testing system of Wille-Geotechnik

    图 2  玻璃珠三轴试样

    Figure 2.  Experimental setup of glass beads

    图 3  不同围压下玻璃珠偏应力与应变关系

    Figure 3.  Deviatoric stress versus axial strain under different cell pressures

    图 4  应力-应变曲线中前震、主震和余震

    Figure 4.  Foreshock,main shock,and aftershock in stress-strain graph

    图 5  偏应力最大降幅与围压的关系

    Figure 5.  Maximum deviator drop versus cell pressure

    图 6  偏应力降幅应变间隔与围压的关系

    Figure 6.  Interval time of strain between deviator drop versus cell pressure

    图 7  玻璃珠体变与轴向应变关系(σc = 600 kPa)

    Figure 7.  Volumetric strain versus axial strain(σc = 600 kPa)

    图 8  偏应力突降与体变突降的关系(σc = 400 kPa)

    Figure 8.  Abrupt deviator drop versus abrupt volumetric strain drop

    图 9  体变最大降幅、偏应力最大降幅与不同围压的关系

    Figure 9.  Maximum volumetric strain drop and maximum deviator drop versus cell pressure

    图 10  试样围压与应变关系

    Figure 10.  Cell pressure versus axial strain

    图 11  偏应力、体变、围压与轴向应变的关系图

    Figure 11.  Deviatoric stress,volumetric strain,and cell pressure versus axial strain

    图 12  三轴试验前后玻璃珠表面特征

    Figure 12.  Surface characteristics of glass beads before and after triaxial test

    图 13  颗粒材料中应力链破坏过程

    Figure 13.  Schematic of cracking process of force chain during granular shear

    表  1  不同围压条件下试样的偏应力峰值强度和摩擦角

    Table  1.   Peak strengths and friction angles of glass beads under different cell pressures

    编号 高度/mm 直径/mm 围压/kPa 峰值强度/kPa 摩擦角/(°)
    CU_D1 100 50 30 64.62 31.23
    CU_D2 100 50 60 130.67 31.42
    CU_D3 100 50 100 218.45 31.47
    CU_D4 100 50 200 442.43 31.68
    CU_D5 100 50 400 836.18 30.73
    CU_D6 100 50 600 1299.31 31.32
    下载: 导出CSV

    表  2  不同围压下第1次出现粘滑震动的应变与偏应力降幅

    Table  2.   Deviator drop and strain of the first stick-slip

    项目 围压/kPa
    30 60 100 200 400 600
    应变/% 1.33 1.17 0.90 0.81 0.67 0.87
    偏应力降幅/kPa 1.18 3.02 38.72 123.95 385.70 332.95
    Δq/σc/% 3.93 5.03 38.72 61.98 96.42 55.49
    下载: 导出CSV

    表  3  不同围压下试样由压缩转为膨胀的应变点

    Table  3.   Volumetric strain turning point of glass beads under different cell pressures

    项目 围压/kPa
    30 60 100 200 400 600
    最小压缩体变 –0.024 –0.120 –0.056 –0.053 –0.094 –0.140
    轴向应变 0.069 0.305 0.145 0.148 0.210 0.340
    下载: 导出CSV
  • 马宗晋. 活动构造基础与工程地震 [M]. 北京: 地震出版社, 1992: 82-83
    李力刚,黄培华,傅容珊,等. 断层粘滑摩擦增温的理论分析及其对TL,ESR测龄的意义[J]. 地震地质,1999,21(4): 387-396

    LI Ligang, HUANG Peihua, Fu Rongshan, et al. Frictional heating by stick slip and its significance for TL,ESR dating[J]. Seismology and Geology, 1999, 21(4): 387-396
    崔德山,项伟,陈琼,等. 细颗粒粘滑运动的能量耗散与释放试验[J]. 地球科学:中国地质大学学报,2016,41(9): 1603-1610

    CUI Deshan, XIANG Wei, CHEN Qiong, et al. Experiment of energy dissipation and energy release during stick-slip within glass beads[J]. Earth Science:Journal of China University of Geosciences, 2016, 41(9): 1603-1610
    ADJEMIAN F, EVESQUE P. Experimental study of stick-slip behaviour[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 2004, 28(6): 501-530
    邵同宾,嵇少丞. 俯冲带地震诱发机制:研究进展综述[J]. 地质论评,2015,61(2): 245-268

    SHAO Tongbin, JI Shaocheng. Earthquake mechanisms of subduction zones:a state-of-the-art overview[J]. Geological Review, 2015, 61(2): 245-268
    OKAZAKI K, KATAYAMA I. Slow stick slip of antigorite serpentinite under hydrothermal conditions as a possible mechanism for slow earthquakes[J]. Geophysical Research Letters, 2015, 42(4): 1099-1104
    王绳祖,张流. 剪切破裂与粘滑——浅源强震发震机制的研究[J]. 地震地质,1984,6(2): 63-73

    WANG Shengzu, ZHANG Liu. Shear fracture and stick-slip:a study on shock-generation mechanism of strong shallow earthquakes[J]. Seismology and Geology, 1984, 6(2): 63-73
    徐锡伟,于贵华,王峰. 1966年邢台地震群的发震构造模型——新生断层形成?先存活断层摩擦粘滑?[J]. 中国地震,2004,16(4): 364-378

    XU Xiwei, YU Guihua, WANG Feng, et al. Seismogenic model for the 1966 Xingtai earthquakes—nucleation of new-born fault or strick-slip of pre-existing fault?[J]. Earthquake Research in China, 2004, 16(4): 364-378
    WILSON B, DEWERS T, RECHES Z E, et al. Particle size and energetics of gouge from earthquake rupture zones[J]. Nature, 2005, 434(7034): 749-52
    ALBERT I, TEGZES P, ALBERT R, et al. Stick-slip fluctuations in granular drag[J]. Physical Review E: Statistical Nonlinear & Soft Matter Physics, 2001, 64(1): 031307
    BOBRYAKOV A P. Stick-slip mechanism in a granular medium[J]. Journal of Mining Science, 2010, 46(6): 600-605
    DOANH T, HOANG M T, ROUX J N, et al. Stick-slip behaviour of model granular materials in drained triaxial compression[J]. Granul Matter, 2013, 15(1): 1-23
    JOHNSON P A, FERDOWSI B, KAPROTH B M, et al. Acoustic emission and microslip precursors to stick-slip failure in sheared granular material[J]. Geophysical Research Letters, 2013, 40(21): 5627-5631
    LEEMAN J R, SCUDERI M M, MARONE C, et al. On the origin and evolution of electrical signals during frictional stick slip in sheared granular material[J]. Journal of Geophysical Research Solid Earth, 2014, 119(5): 4253-4268
    ELKHOLY K N, KHONSARI M M. Experimental investigation on the stick-slip phenomenon in granular collision lubrication[J]. Journal of Tribology, 2008, 130(2): 021302-021308
    张徐,赵春发,翟婉明. 铁路碎石道砟静态压碎行为数值模拟[J]. 西南交通大学学报,2015,50(1): 137-143

    ZHANG Xu, ZHAO Chunfa, ZHAI Wanming. Numerical analysis of static crushed behavior of railway ballast[J]. Journal of Southwest Jiaotong University, 2015, 50(1): 137-143
    BRACE W F, BYERLEE J D. Stick-slip as a mechanism for earthquakes[J]. Science, 1966, 153(3739): 990-992
    何昌荣,张流. 用负刚度及变刚度方法研究粘滑[J]. 地震地质,1996,18(3): 199-211

    HE Changrong, ZHANG Liu. A study on the mechanics of stick slip by controlling a linear combination of load and displacement[J]. Seismology and Geology, 1996, 18(3): 199-211
    王学滨,马冰,吕家庆. 实验室尺度典型断层系统破坏,前兆及粘滑过程数值模拟[J]. 地震地质,2014,36(3): 845-861

    WANG Xuebin, MA Bing, LÜ Jiaqing. Numerical simulation of failures,precursors and stick-slip processes for typical fault sturctures at a laboratory scale[J]. Seismology and Geology, 2014, 36(3): 845-861
    BRUNE J N, HENYEY T L, ROY R F. Heat flow,stress,and rate of slip along the San Andreas fault,California[J]. Journal of Geophysical Research, 1969, 74(15): 3821-3827
    王贤仁,卢艳清. 澜沧—耿马地震前FSQ仪记录到的粘滑和慢地震及对短临预报探讨[J]. 地震研究,1994,17(2): 157-163

    WANG Xianren, LU Yanqing. Stick-slip and slow shocks recorded on FSQ tiltmeters before Lancang-Gengma earthquake and primary study on short-impending earthquake prediction[J]. Journal of Seismological Research, 1994, 17(2): 157-163
    李普春,刘力强,郭玲莉,等. 粘滑过程中的多点错动[J]. 地震地质,2013,35(1): 125-137

    LI Puchun, LIU Liqiang, GUO Lingli, et al. Multi-point dislocation in stick-slip process[J]. Seismology and Geology, 2013, 35(1): 125-137
    井国庆,黄红梅,施晓毅,等. 道砟尖角折断的三轴压缩试验与离散元数值分析[J]. 西南交通大学学报,2017,52(2): 216-221

    JING Guoqing, HUANG Hongmei, SHI Xiaoyi, et al. Triaxial test and dem analysis of ballast aggregate with angularity breakage[J]. Journal of Southwest Jiaotong University, 2017, 52(2): 216-221
    崔德山,项伟,陈琼,等. 颗粒材料黏滑运动特征与颗粒黏结试验研究[J]. 岩石力学与工程学报,2016,35(9): 1924-1935

    CUI Deshan, XIANG Wei, CHEN Qiong, et al. Experimental study on stick-slip behaviour and sintering phenomenon of glass beads[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(9): 1924-1935
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  522
  • HTML全文浏览量:  209
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-14
  • 修回日期:  2017-10-12
  • 网络出版日期:  2017-10-22
  • 刊出日期:  2019-02-01

目录

    /

    返回文章
    返回