• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于低空风预测模型的救援航迹修正规划方法

张明 王硕 喻慧

张明, 王硕, 喻慧. 基于低空风预测模型的救援航迹修正规划方法[J]. 西南交通大学学报, 2016, 29(6): 1258-1264. doi: 10.3969/j.issn.0258-2724.2016.06.028
引用本文: 张明, 王硕, 喻慧. 基于低空风预测模型的救援航迹修正规划方法[J]. 西南交通大学学报, 2016, 29(6): 1258-1264. doi: 10.3969/j.issn.0258-2724.2016.06.028
ZHANG Ming, WANG Shuo, YU Hui. Amendment Method for Planning Rescue Trajectory Based on Low-Level Wind Forecasting Model[J]. Journal of Southwest Jiaotong University, 2016, 29(6): 1258-1264. doi: 10.3969/j.issn.0258-2724.2016.06.028
Citation: ZHANG Ming, WANG Shuo, YU Hui. Amendment Method for Planning Rescue Trajectory Based on Low-Level Wind Forecasting Model[J]. Journal of Southwest Jiaotong University, 2016, 29(6): 1258-1264. doi: 10.3969/j.issn.0258-2724.2016.06.028

基于低空风预测模型的救援航迹修正规划方法

doi: 10.3969/j.issn.0258-2724.2016.06.028
基金项目: 

国家自然科学基金资助项目(U1233101,71271113,U1633119)

中央高校基本科研业务费专项基金资助项目(NS2016062)

详细信息
    作者简介:

    张明(1975-),男,博士,副教授,研究方向为空中交通规划与仿真,电话:13851656487,E-mail:zhangm@nuaa.edu.cn

Amendment Method for Planning Rescue Trajectory Based on Low-Level Wind Forecasting Model

  • 摘要: 针对低空救援航迹易受到侧风影响难以获得准确的航迹规划路径问题,采用数据融合方法预测低空风,修正航空器的低空规划航迹.首先,将飞行区域内的国际交换站作为观测点,通过应用基于无迹卡尔曼滤波(UKF)的数值气象预报释用技术,将观测点的风速、风向记录数据与预报值进行融合,建立低空风预测模型;其次,利用该模型,校正预报数据的系统误差,得出修正的风预测值;最后,结合航空器的爬升率、巡航速度等性能参数与所经航路点的风速、风向信息,依据速度矢量合成原理,修正各航路点的过点时刻.仿真实验表明,与传统的卡尔曼滤波预测方法相比,由UKF方法预测得到的风速、风向RMSE分别减少了12.88%与17.50%,对初始规划航迹的修正更为精确.

     

  • KORN B, HELMKE H, KUENZ A. 4D trajectory management in the extended TMA:coupling AMAN and 4D FMS for optimized approach trajectories[C]//25th Congress of International Council of the Aeronautical Sciences. Hamburg:, 2006:1-10.
    TORRES J L, GARCIA A, BLAS M, et al. Forecast of hourly average wind speed with ARMA models in Navarre (Spain)[J]. Solar Energy, 2005, 79(1):65-77.
    CARLOS D Z, MAURICIO A. BLVAREZ E G. Short-term wind speed prediction based on robust Kalman filtering:an experimental comparison[J]. Applied Energy, 2015, 156(10):321-330.
    CHEN K, YU J. Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach[J]. Applied Energy, 2014, 113(1):690-705.
    TAGLIAFERRI F, VIOLA I M, FLAY R G J. Wind direction forecasting with artificial neural networks and support vector machines[J]. Ocean Engineering, 2015, 97(3):65-73.
    FREHLICH R, SHARMAN R. Climatology of velocity and temperature turbulence statistics determined from rawinsonde and ACARS/AMDAR data[J]. Journal of Applied Meteorology and Climatology, 2010, 49(6):1149-1169.
    FUKUDA Y, SHIRAKAWA M, SENOGUCHI A. Development of trajectory prediction model[C]//ENRI International Workshop on ATM/CNS.Tokyo:, 2010:95-100.
    HURTER C, ALLIGIER R, GIANAZZA D, et al. Wind parameters extraction from aircraft trajectories[J]. Computers, Environment and Urban Systems, 2014, 47(9):28-43.
    张军峰,蒋海行,武晓光,等, 基于BADA及航空器意图的四维航迹预测[J], 西南交通大学学报, 2014,49(3):553-558. ZHANG Junfeng,JIANG Haihang,WU Xiaoguang, et al.4D Trajectory prediction based on bADA and aircraft intent[J]. Journal of Southwest Jiaotong University, 2014,49(3):553-558
    王超,韩邦村,王飞. 基于轨迹谱聚类的终端区盛行交通流识别方法[J]. 西南交通大学学报,2014,49(3):546-552. WANG Chao,HAN Bangcun,WANG Fei. Identification of prevalent air traffic flow in terminal airspace based on trajectory spectral clustering[J]. Journal of Southwest Jiaotong University, 2014,49(3):546-552
    GARIEL M, SRIVASTAVA A N, FERON E. Trajectory clustering and an application to airspace monitoring[J].IEEE Transactions on Intelligent Transportation Systems, 2011, 12(4):1511-1524.
    LEE A G, WEYGANDT S S, SCHWARTZ B, et al. Performance of trajectory models with wind uncertainty[C]//AIAA Modeling and Simulation Technologies Conference. Chicago:, 2009:120-142.
    ZHENG Q M, ZHAO J Y. Modeling wind uncertainties for stochastic trajectory synthesis[C]//11th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference. Virgnia Beach:, 2011:20-22.
    LYMPEROPOULOS I, LYGEROS J. Sequential monte carlo methods for multi-aircraft trajectory prediction in air traffic management[J]. International Journal of Adaptive Control and Signal Processing, 2010, 24(10):830-849.
    HU J, PRANDINI M, SASTRY S. Aircraft conflict prediction in the presence of a spatially correlated wind field[J].IEEE Transactions on Intelligent Transportation Systems, 2005, 6(3):326-340.
    修春波,任晓,李艳晴,等. 基于卡尔曼滤波的风速序列短期预测方法[J]. 电工技术学报,2014,29(2):253-259. XIU Chunbo, REN Xiao, LI Yanqin, et al. Short-term prediction method of wind speed series based on kalman filtering fusion[J]. Transactions of China Electrotechnical Society, 2014, 29(2):253-259.
    KANDEPU R, FOSS B, IMSLAND L. Applying the unscented Kalman filter for nonlinear state estimation[J]. Journal of Process Control, 2008, 18(7):753-768.
    VALVERDE G, TERZIJA V. Unscented Kalman filter for power system dynamic state estimation[J]. IET Generation, Transmission Distribution, 2011, 5(1):29-37.
  • 加载中
计量
  • 文章访问数:  478
  • HTML全文浏览量:  76
  • PDF下载量:  155
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-05
  • 刊出日期:  2016-12-25

目录

    /

    返回文章
    返回