Robustness Analysis for Contactless Moving Power Supply System with Different Compensation Topologies
-
摘要: 为揭示非接触移动供电系统参数扰动的产生、传播及影响机理,首先采用广义状态空间平均建模方法,建立了4种基本双边谐振补偿拓扑的系统不确定模型;其次,研究了电磁耦合机构相对距离和工况变化导致的互感及负载扰动特性,并依此推导出软开关调制模式下的系统频率扰动规律;第三,基于参数扰动模型分析了互感、负载及频率变化对系统输出的影响,并通过计算系统结构奇异值分析了不同补偿拓扑系统的鲁棒稳定性;最后,针对一套双边串联谐振补偿系统,对互感及负载偏离标称值条件下的系统鲁棒性进行了验证实验.实验波形表明:当互感和负载分别在标称值(12.15 H、5.00 )与摄动值(9.51 H、12.55 )之间变化时,系统仍然是鲁棒稳定的,采用PI控制能较好地抑制其对负载输出电压的影响.Abstract: In order to reveal the generation, propagation and effect mechanism of parameter disturbance in contactless moving power supply system, the generalized state space average modeling method was first used to establish the uncertain model for four basic kinds of bilateral-resonance compensation topologies. Secondly, the mutual inductance and load disturbance characteristics were studied when the relative distance of electromagnetic coupling mechanism and working conditions change. According to this, the system frequency disturbance law under soft-switching modulation mode was deduced. Thirdly, the effect of changes in mutual inductance, load and frequency on the system output was analyzed according to the parameter disturbance model, and also the system robust stability was analyzed by computing structured singular value under different compensation topologies. Finally, a bilateral resonant system in series was used to verify the system robustness when the mutual inductance and load deviate from the nominal values. The experimental waveforms of system electrical variables show that when the mutual inductance and load are varied between nominal values(12. 15 H, 5. 00 ) and perturbation values(9. 51 H, 12. 55 ), the system is still robustly stable, and the influence of parameter perturbations on the load output voltage can be well suppressed by PI control.
-
Key words:
- Inductive power transmission /
- resonance /
- uncertain systems /
- robustness /
- structured singular value
-
CHEN L, NAGENDRA G R, BOYS J T, et al. Double-coupled systems for IPT roadway applications[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2015, 3(1):37-49. 黄学良,谭林林,陈中,等. 无线电能传输技术研究与应用综述[J]. 电工技术学报,2013,28(10):1-11. HUANG Xueliang, TAN Linlin, CHEN Zhong, et al. Review and research progress on wireless power transfer technology[J]. Transactions of China Electrotechnical Society, 2013, 28(10):1-11. 孙跃,谭晶晶,唐春森. IGBT机理建模及其基于神经网络的参数辨识方法[J]. 西南交通大学学报,2015,50(6):1143-1149,1163. SUN Yue, TAN Jingjing, TANG Chunsen. Physical modeling of IGBT and its parameter identification method based on neural network[J]. Journal of Southwest Jiaotong University, 2015, 50(6):1143-1149,1163. 刘晓明,徐叶飞,彭博,等. 磁耦合双模无线电能传输系统研究[J]. 电工技术学报,2015,30(11):53-59. LIU Xiaoming, XU Yefei, PENG Bo, et al. Study on magnetically-coupled bi-module wireless power transfer[J]. Transactions of China Electrotechnical Society, 2015, 30(11):53-59. BOYS J T, COVIC G A. The inductive power transfer story at the university of auckland[J]. IEEE Circuits and Systems Magazine, 2015, 15(2):6-27. HAO H, COVIC G A, BOYS J T. A parallel topology for inductive power transfer power supplies[J]. IEEE Transactions on Power Electronics, 2014, 29(3):1140-1151. NAMADMALAN A. Bidirectional current-fed resonant inverter for contactless energy transfer systems[J]. IEEE Transactions on Industrial Electronics, 2015, 62(1):238-245. 孙跃,夏晨阳,戴欣,等. 感应耦合电能传输系统互感耦合参数的分析与优化[J]. 中国电机工程学报,2010,30(33):44-50. SUN Yue, XIA Chenyang, DAI Xin, et al. Optimization of mutual inductance for inductively coupled power transfer system[J]. Proceedings of the Chinese Society for Electrical Engineering, 2010, 30(33):44-50. 宋凯,朱春波,李阳,等. 用于电动汽车动态供电的多初级绕组并联无线电能传输技术[J]. 中国电机工程学报,2015,35(17):4445-4453. SONG Kai, ZHU Chunbo, LI Y, et al. Wireless power transfer technology for electric vehicle dynamic charging using multi-parallel primary coils[J]. Proceedings of the Chinese Society for Electrical Engineering, 2015, 35(17):4445-4453. SHIN J, SHIN S, KIM Y, et al. Design and implementation of shaped magnetic-resonance-based wireless power transfer system for roadway-powered moving electric vehicles[J]. IEEE Transactions on Industrial Electronics, 2014, 61(3):1179-1192. 戴欣,周继昆,孙跃. 具有频率不确定性的型谐振感应电能传输系统H控制方法[J]. 中国电机工程学报,2011,31(30):45-53. DAI Xin, ZHOU Jikun, SUN Yue. H control method with frequency uncertainty for type resonant iInductive power transfer system[J]. Proceedings of the Chinese Society for Electrical Engineering, 2011, 31(30):45-53. LI Yanling, SUN Yue, DAI Xin. -synthesis for frequency uncertainty of the ICPT system[J]. IEEE Transactions on Industrial Electronics, 2013, 60(1):291-300. ZOU Yang, DAI Xin, LI Weiyi, et al. Robust design optimization for inductive power transfer systems from topology collection based on an evolutionary multi-objective algorithm[J]. IET Power Electronics, 2015, 8(9):1767-1776. 李砚玲,孙跃,戴欣. 型感应电能传输系统的鲁棒稳定性分析[J]. 湖南大学学报:自然科学版,2011,38(10):50-55. LI Yanling, SUN Yue, DAI Xin. Robust stability analysis of -type inductive power transfer system[J]. Journal of Hunan University:Natural Sciences, 2011, 38(10):50-55. SESSIK B, IULIAN M, ANTONETA I B. Power electronic converters modeling and control[M]. London:Springer-Verlag, 2014:97-107. 李发海,王岩. 电机与拖动基础[M]. 北京:清华大学出版社,2005:24-64.
点击查看大图
计量
- 文章访问数: 504
- HTML全文浏览量: 72
- PDF下载量: 236
- 被引次数: 0