Fatigue Pitting Failure Analysis of Tooth Surface of Spiral Bevel Gear for EMU Train
-
摘要: 为解决高速动车组弧齿锥齿轮齿面疲劳点蚀故障,统计了点蚀故障发生的位置,并对点蚀断口进行了宏观、微观分析.在此基础上,基于动车组实际运行工况编制齿轮载荷谱,按ISO 10300-2-2001标准分析了齿面接触应力,利用试验台进行多工况加载试验,获得了接触面积的变化规律和趋势;确定了等效载荷扭矩下,接触区域当量圆柱齿轮与齿宽中点法线当量圆柱齿轮的赫兹接触线长度和分度圆直径,并分析了齿面接触应力与接触面积间变化规律.研究结果表明:在变载荷运行工况下,从动齿轮锥齿小端凹面为常接触区域;在等效扭矩载荷下,实际接触区域偏离齿宽中心线,当量接触线长度和分度圆直径小于理论计算值时,实际接触应力(972.23 MPa)大于理论接触应力(777.26 MPa),将等效扭矩载荷下齿轮凹面接触区域调整到齿宽的中部是解决齿轮点蚀故障的有效措施.Abstract: In order to overcome the fatigue pitting failure of tooth surface of spiral bevel gears for electric multiple unit (EMU) trains, the pitting failure locations were firstly summarized and both macro-and micro-morphologies of the pitting fracture surfaces were investigated. Then, based on the track test of EMU trains in practical service, the load spectrum of gear was compiled thoroughly, and the contact stress of gear was calculated according to the ISO 10300-2-2001. In addition, a series of bench loading tests under different operational conditions were conducted to obtain the variety law of the contact area. At the condition of the equivalent loading torque, the lengths of Herz contact lines and the diameters of pitch circles were determined in the contact area of cylindrical gear and that in the normal direction at the tooth width center, and the contact stress and contract area of gears were also analyzed. The results show that the concave contact area at the end of small gear teeth of the driven spiral bevel is the normal contact area under variable loading conditions, while the contact area would be off the tooth width center line under the equivalent torque loading condition. When the length of contact line and the diameter of pitch circle are less than those obtained from theoretical analysis, the actual contact stress (972.23 MPa) will be larger than the theoretical contact stress (777.26 MPa). As a result, in order to avoid the fatigue pitting failure, it is suggested adjusting the contact area of gear concave to the center of tooth width under the equivalent torque loading condition.
-
Key words:
- spiral bevel gear /
- pitting failure /
- load spectrum /
- contact area /
- contact stress
-
李源,袁杰红. 航空减速器弧齿锥齿轮动态啮合仿真分[J]. 机械传动,2007,31(5):43-44. LI Yuan, YUAN Jiehong. A simulating analysis model for spiral bevel gear dynamic mesh-ing in aerostat reducer[J]. Journal of Mechanical Transmission, 2007, 31(5):43-44. 方宗德,邓效忠,任东锋. 考虑边缘接触的弧齿锥齿轮承载接触分析[J]. 机械工程学报,2002,38(9):69-72. FANG Zongde, DENG Xiaozhong, REN Dongfeng. Loaded tooh contact analysia of spring bevel gears considering edge contact[J]. Chinese Journal of Mechanical Engineering, 2002, 38(9):69-72 方宗德,杨宏斌,周彦伟,等. 高速弧齿锥齿轮动态啮合质量优化[J]. 航空学报,2001,22(1):69-72. FANG Zongde, YANG Hongbin, ZHOUYanwei, et al. Optimization of dynamic meshing behavior of high speed spiral bevel gears[J]. Acta Aeronautica et Astronautica Sinica, 2001, 22(1):69-72. 邓效忠,方宗德,张金良,等. 弧齿锥齿轮的高重合度设计[J]. 中国机械工程,2002,13(9):791-795. DENG Xiaozhong, FANG Zongde, ZHANG jinliang, et al. Design of spiral bevel gears with high contact ratio[J]. China Mechanical Engineering, 2002, 13(9):791-795. 邓效忠,方宗德,杨宏斌,等. 高重合度弧齿锥齿轮的强度分析[J]. 航空动力学报,2002,17(3):367-372. DENG Xiaozhong, FANG Zongde, YANG Hongbin, et al. Strength analysis of spiral bevel gears with high contact ratio[J]. Acta Aeronautica et Astronautica Sinica, 2002, 17(3):367-372. 仲岑泓,张以都. 弧齿锥齿轮准静态啮合仿真分析[J]. 机械工程师,2008(1):143-145. ZHONG Cenhong, ZHANG Yidu. A quasi-static meshing simulating analysis for spiral bevel gear[J].Mechanical Enginner, 2008(1):143-145. 张金良,方宗德,曹雪梅,等. 弧齿锥齿轮齿面接触应力分析[J]. 机械科学与技术,2007,26(10):1268-1272. ZHANG Jinliang, FANG Zongde, CAO Xuemei, et al. Analysis of a spiral bevel gear's tooth contact stress[J]. Mechanical Science and Technology for Aerospace Engineering, 2007, 26(10):1268-1272. 侯祥颖,方宗德,邓效忠,等. 弧齿锥齿轮有限元建模与接触分析[J]. 哈尔滨工程大学学报,2015,36(6):826-830. HOU Xiangying, FANG Zongde, DENG Xiaozhong, et al. Contact analysis of spiral bevel gears based on finite element model[J]. Journal of Harbin Engineering University, 2015, 36(6):826-830. 苏进展,方宗德,蔡香伟. 弧齿锥齿轮数字化齿面啮合仿真分析与试验[J]. 西北工业大学学报,2012,30(4):565-569. SU Jinzhan, FANG Zongde, CAI Xiangwe. A useful computerized meshing analysis of numerical tooth surfaces for spiral bevel gears[J]. Journal of Northwestern Polytechnical University, 2012, 30(4):565-569. 肖望强,李威. 基于双压力角轻量化设计的弧齿锥齿轮接触应力分析与试验[J]. 机械工程学报,2015,38(9):69-72. XIAO Wangqiang, LI Wei. Analysis andexperiment of contact stress for spiral bevel gear based on lightweight design of double pressure angles[J]. Journal of Mechanical Engineering, 2015, 38(9):69-72. 何渠,贺敬良,何畅然,等. 弧齿锥齿轮传动仿真分析及修形优化[J]. 北京信息科技大学学报,2014, 29(6):37-40. HE Qu, HE Jingliang, HE Changren, et al. Simulation analysis of spiral bevel gear transmission and optimization by tooth profile modification[J]. Journal of Beijing Information Science and Technology, 2014, 29(6):37-40. ISO. ISO6336-6-2006 Calculation of load capacity of spur and helical gears-part 5:trength and quality of materials[S]. Second Edition.:The International Organization for Standardization, 2003. ISO. ISO10300-2-2001 Calculation of load capacity of bevel gears-part 2:calculation of surface durability (pitting)[S].:The International Organization for Standardization, 2001. ISO. ISO6336-6-2006Calculation of load capacity of spur and helical gears-part 6:calculation of service life under variable load[S]. Second Edition.:The International Organization for Standardization, 2003. 阎邦椿.机械设计手册第2卷.机械零部件设计(连接、紧固与传动)[M]. 5版. 北京:机械工业出版社,2010:8-178. 郑昌启. 弧齿锥齿轮和准双曲面齿轮[M]. 北京:机械工业出版社,1987:65-120. 李艳萍. 浅谈弧齿锥齿轮的齿面接触区[J]. 内蒙古科技与经济,2014(3):121-122.
点击查看大图
计量
- 文章访问数: 575
- HTML全文浏览量: 96
- PDF下载量: 228
- 被引次数: 0