Two-Dimensional Elasticity Solutions for In-Plane Free Vibration of FGM Rectangular Plates under Different Boundary Conditions
-
摘要: 为获得功能梯度材料(FGM)矩形板面内自由振动的动力学响应,基于二维线弹性理论建立了功能梯度材料矩形板面内自由振动的控制微分方程.采用微分求积法(DQM)数值研究了9种典型边界下FGM矩形板面内自由振动的频率特性,分析了边界条件、长宽比及梯度指数对自振频率的影响.分析结果表明:通过设置梯度指数为0,将FGM矩形板退化为各向同性矩形板,与已有各向同性矩形板的文献结果进行比较,表明了DQM的适用性和精确性;9种边界下长宽比对FGM矩形板基频的影响不同,基频随长宽比的增大而增大的板分别为:C-C-C-C板、SS2-C-SS2-C板、C-C-C-F板、SS1-C-SS1-C板、C-C-F-F板和SS1-SS1-SS2-SS2板;基频随长宽比的增大而减小的板分别为:F-F-F-F板与C-F-C-F板;SS1-SS1-SS1-SS1板发生剪切自锁现象,基频随长宽比的增大而基本保持不变;基频随梯度指数的增大而快速减小,梯度指数p 10时,基频变化不再明显.
-
关键词:
- FGM矩形板 /
- 面内自由振动 /
- 无量纲频率 /
- 微分求积法(DQM)
Abstract: In order to obtain the dynamic responses on in-plane free vibration of functionally graded material (FGM) rectangular plates, based on the two-dimensional linear elasticity theory, the governing partial differential equations for the in-plane free vibration of FGM rectangular plates were derived. Using differential quadrature method (DQM), the frequency characteristics for in-plane free vibration of FGM rectangular plates under 9 different boundary conditions were investigated. The effects of boundary conditions, geometrical parameters and material gradient indexes on the dimensionless frequencies of the FGM rectangular plates were analyzed. The material gradient index was set as zero to take FGM rectangular plates as isotropic rectangular plates. Then, the applicability and accuracy of the DQM were demonstrated by comparing the in-plane free vibration of the obtained isotropic rectangular plates with those in literature. The effect of the length-width ratio on the fundamental frequency of the FGM rectangular plates varies under different boundary conditions. The fundamental frequency increases with the length-width ratios for the plates C-C-C-C, SS2-C-SS2-C, C-C-C-F, SS1-C-SS1-C, C-C-F-F and SS1-SS1-SS2-SS2, and decreases with the increase of the length-width ratios for the plates F-F-F-F and C-F-C-F, but has no significant changes for SS1-SS1-SS1-SS1 plate because of shear locking. The fundamental frequency decreases rapidly with the increase of material gradient indexes, but it has no obvious change when the material gradient index p is more than 10. -
LYON R H. In-plane contribution to structural noise transmission[J]. Noise Control Engineering Journal, 1986, 26(1):22-27. LANGLEY R S, BERCIN A N. Wave intensity analysis of high frequency vibration[J]. Philosophical Transactions of the Royal Society of London A, 1994, 346:489-499. BERCIN A N. An assessment of the effect of in-plane vibration on the energy flow between coupled plates[J]. Journal of Sound and Vibration, 1996, 191(5):661-680. BARDELL N S, LANGLEY R S, DUNSDON J M. On the free in-plane vibration of isotropic rectangular plates[J]. Journal of Sound and Vibration, 1996, 191(3):459-467. FARAG N H, PAN J. Free and force in-plane vibration of rectangular plates[J]. Acoustical Society of America, 1998, 103(1):408-413. WANG G, WERELEY N M. Free in-plane vibration of rectangular plates[J]. AIAA, 2002, 40(5):953-959. GORMAN D J. Free in-plane vibration analysis of rectangular plates by the method superposition[J]. Journal of Sound and Vibration, 2004, 272(3):831-851. GORMAN D J. Exact solutions for the free in-plane vibration of rectangular plates with two opposite edges simply supported[J]. Journal of Sound and Vibration, 2006, 294(1):131-161. DU Jingtao, LI W L, JIN Guoyong, et al. An analytical method for the in-plane vibration analysis of rectangular plates with elastically restrained edges[J]. Journal of Sound and Vibration, 2007, 306(3-5):908-927. XING Y F, LIU B. Exact solutions for the free in-plane vibrations of rectangular plates[J]. International Journal of Mechanical Sciences, 2009, 51(3):246-255. LIU Bo, XING Yufeng. Exact solutions for free in-plane vibration of rectangular plates[J]. Acta Mechanica Solida Sinica, 2011, 24(6):556-567. 蒲育,滕兆春,赵海英. 四边弹性约束矩形板面内自由振动的DQM求解[J]. 振动与冲击,2016,35(12):55-60. PU Yu, TENG Zhaochun, ZHAO Haiying. In-plane free vibration analysis for rectangular plates with elastically restrained edges by differential quadrature method[J]. Journal of Vibration and Shock, 2016, 35(12):55-60. 尹镪,蔡成标,陈兆玮. 基于瞬态边界元法的箱梁声辐射[J]. 西南交通大学学报,2015,50(6):1100-1105. YIN Qiang, CAI Chengbiao, CHEN Zhaowei. Characteristics analysis of sound radiation of box girder based on transient boundary element method[J]. Journal of Southwest Jiaotong University, 2015, 50(6):1100-1105. JIN Guoyong, SU Zhu, SHI Shuangxia, et al. Three-dimensional exact solution for the free vibration of arbitrarily thick functionally graded rectangular plates with general boundary conditions[J]. Composite Structures, 2014, 108:565-577. 蒲育,滕兆春. Winkler-Pasternak弹性地基FGM梁自由振动二维弹性解[J]. 振动与冲击,2015,34(20):74-79. PU Yu, TENG Zhaochun. Two-dimensional elasticity solutions for free vibration of FGM beams resting on Winkler-Pasternak elastic foundations[J]. Journal of Vibration and Shock, 2015, 34(20):74-79. SIMSEK M. Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories[J]. Nuclear Engineering Design, 2010, 240(4):697-705.
点击查看大图
计量
- 文章访问数: 498
- HTML全文浏览量: 63
- PDF下载量: 126
- 被引次数: 0