• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

面向遥感影像匹配的特征点检测算子性能评估

叶沅鑫 慎利

杜红兵, 张庆庆, 陈晨. 民航飞机客舱乘客应急疏散仿真模型[J]. 西南交通大学学报, 2016, 29(1): 161-167. doi: 10.3969/j.issn.0258-2724.2016.01.023
引用本文: 叶沅鑫, 慎利. 面向遥感影像匹配的特征点检测算子性能评估[J]. 西南交通大学学报, 2016, 29(6): 1170-1176. doi: 10.3969/j.issn.0258-2724.2016.06.017
DU Hongbing, ZHANG Qingqing, CHEN Chen. Occupant Evacuation Simulation Model during Civil Aircraft Emergency[J]. Journal of Southwest Jiaotong University, 2016, 29(1): 161-167. doi: 10.3969/j.issn.0258-2724.2016.01.023
Citation: YE Yuanxin, SHEN Li. Performance Evaluation of Interest Point Detectors for Remote Sensing Image Matching[J]. Journal of Southwest Jiaotong University, 2016, 29(6): 1170-1176. doi: 10.3969/j.issn.0258-2724.2016.06.017

面向遥感影像匹配的特征点检测算子性能评估

doi: 10.3969/j.issn.0258-2724.2016.06.017
基金项目: 

国家973计划资助项目(2012CB719901)

国家自然科学基金资助项目(41401369,41401374)

详细信息
    作者简介:

    叶沅鑫(1985-),男,讲师,研究方向为遥感图像处理,E-mail:yeyuanxin110@163.com

    通讯作者:

    慎利(1986-),男,讲师,研究方向为机器学习与遥感影像处理,E-mail:rsshenli@outlook.com

Performance Evaluation of Interest Point Detectors for Remote Sensing Image Matching

  • 摘要: 在基于特征点的匹配方法中,特征点检测是非常关键的步骤,直接影响到匹配的效果.为了确立遥感影像匹配过程中特征点算子的选择依据,本文从光谱、时相和尺度(分辨率)3个方面,选择不同类型的遥感影像作为实验数据,以特征点重复率作为评估标准,对当前主流的Harris-Laplace、Hessian-Laplace、DoG和MSER 4种特征点检测算子进行性能评估,并分析了每一种算子的优缺点和适用范围.实验结果表明:在光谱和时相方面,Hessian-Laplace的平均重复率达到40%,性能最好,其次为Harris-Laplace和DoG,而MSER的性能相对较弱;而对于尺度方面,MSER表现出最好的性能,平均重复率达到35%,其次为Hessian-Laplace,而Harris-Laplace和DoG的性能较弱.

     

  • 叶沅鑫,单杰,彭剑威,等. 利用局部自相似进行多光谱遥感影像自动配准[J]. 测绘学报,2014,43(3):268-275. YE Yuanxin, SHAN Jie, PENG Jianwei, et al. Automated multispectral remote sensing image registration using local self-similarity[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(3):268-275.
    张帅毅,李永树,蔡国林. 基于贝叶斯决策的航空影像自动配准[J]. 西南交通大学学报,2015,50(1):161-166. ZHANG Shuaiyi, LI Yongshu, CAI Guolin. Aerial image registration based on Bayesian decision theory[J]. Journal of Southwest Jiaotong University, 2015, 50(1):161-166.
    YE Yuanxin, SHEN Li, WANG Jicheng, et al. Automatic matching of optical and SAR imagery through shape property[C]//2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).:IEEE, 2015:1072-1075.
    叶沅鑫,单杰,熊金鑫,等. 一种结合SIFT和边缘信息的多源遥感影像匹配方法[J]. 武汉大学学报:信息科学版,2013,38(10):1148-1151. YE Yuanxin, SHAN Jie, XIONG Jinxin, et al. A matching method combining SIFT and edge information for multi-source remote sensing images[J]. Geomatics and Information Science of Wuhan University, 2013, 38(10):1148-1151.
    ZITOV B, FLUSSER J. Image registration methods:a survey[J]. Image Vis. Comput., 2003, 21(11):977-1000.
    YE Yuanxin, SHAN Jie. A local descriptor based registration method for multispectral remote sensing images with non-linear intensity differences[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 90:83-95.
    SMITH S, BRADY J. SUSAN:a new approach to low level image processing[J]. International Journal of Computer Vision, 1997, 23(1):45-78.
    LINDEBERG T. Feature detection with automatic scale selection[J]. International Journal of Computer Vision, 1998, 30(2):79-116.
    MIKOLAJCZYK K, SCHMID C. Scale affine invariant interest point detectors[J]. International Journal of Computer Vision, 2004, 60(1):63-86.
    MIKOLAJCZYK K, TUYTELAARS T, SCHMID C, et al. A comparison of affine region detectors[J]. International Journal of Computer Vision, 2005, 65(1):43-72.
    LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2):91-110.
    MATAS J, CHUM O, URBAN M, et al. Robust wide-baseline stereo from maximally stable extremal regions[J]. Image and Vision Computing, 2004, 22(10):761-767.
    TUYTELAARS T, MIKOLAJCZYK K. Local invariant feature detectors:a survey[J]. Foundations and Trends in Computer Graphics and Vision, 2008, 3(3):177-280.
    SCHMID C, MOHR R, BAUCKHAGE C. Evaluation of interest point detectors[J]. International Journal of Computer Vision, 2000, 37(2):151-172.
    AANS H, DAHL A L, STEENSTRUP PEDERSEN K. Interesting interest points[J]. International Journal of Computer Vision, 2011, 97(1):18-35.
  • 期刊类型引用(9)

    1. 排日旦·阿布都热依木,吐尔地·托合提,艾斯卡尔·艾木都拉. 基于深度学习的实体关系抽取方法研究. 计算机工程与科学. 2023(05): 895-902 . 百度学术
    2. 王晟全,陈济颖,王奕翔,李昂,李鑫. 无监督网络对抗生成模型的研究. 计算机技术与发展. 2020(04): 89-93 . 百度学术
    3. 阳小华,张硕望,欧阳纯萍. 中文关系抽取技术研究. 南华大学学报(自然科学版). 2018(01): 66-72 . 百度学术
    4. 王旭阳,姜喜秋. 特定领域概念属性关系抽取方法研究. 吉林大学学报(信息科学版). 2017(04): 430-437 . 百度学术
    5. 刘婧,赵嵩正,张小娣. 基于核的关系抽取研究综述. 计算机应用研究. 2016(02): 321-329 . 百度学术
    6. 徐庆,段利国,李爱萍,阴桂梅. 基于实体词语义相似度的中文实体关系抽取. 山东大学学报(工学版). 2015(06): 7-15 . 百度学术
    7. 翟东海,崔静静,聂洪玉,杜佳. 基于语义相似度的话题关联检测方法. 西南交通大学学报. 2015(03): 517-522 . 本站查看
    8. 王李冬,张引,吕明琪. 基于词组主题建模的文本语义压缩算法. 西南交通大学学报. 2015(04): 755-763 . 本站查看
    9. 梁军,张飞云,陈龙,李世浩,顾胜强,张婉婉. 一种新型多核判别分析方法. 西南交通大学学报. 2015(06): 1122-1129 . 本站查看

    其他类型引用(18)

  • 加载中
计量
  • 文章访问数:  572
  • HTML全文浏览量:  92
  • PDF下载量:  267
  • 被引次数: 27
出版历程
  • 收稿日期:  2015-09-16
  • 刊出日期:  2016-12-25

目录

    /

    返回文章
    返回