Performance Evaluation of Interest Point Detectors for Remote Sensing Image Matching
-
摘要: 在基于特征点的匹配方法中,特征点检测是非常关键的步骤,直接影响到匹配的效果.为了确立遥感影像匹配过程中特征点算子的选择依据,本文从光谱、时相和尺度(分辨率)3个方面,选择不同类型的遥感影像作为实验数据,以特征点重复率作为评估标准,对当前主流的Harris-Laplace、Hessian-Laplace、DoG和MSER 4种特征点检测算子进行性能评估,并分析了每一种算子的优缺点和适用范围.实验结果表明:在光谱和时相方面,Hessian-Laplace的平均重复率达到40%,性能最好,其次为Harris-Laplace和DoG,而MSER的性能相对较弱;而对于尺度方面,MSER表现出最好的性能,平均重复率达到35%,其次为Hessian-Laplace,而Harris-Laplace和DoG的性能较弱.Abstract: Interest point detection is a crucial step for the image matching because it directly influences the matching results. In order to establish the criterion of selecting the interest point detectors for remote sensing image matching, different remote sensing images in terms of spetrum, time and scale were selected to evaluate the four famous interest point detectors including Harris-Laplace, Hessian-Laplace, Difference of Gaussian (DoG) and Maximally Stable Extremal Regions (MSER), and the repeatability was used as the evaluation criterion. The merits, the demerits and application of these detectors were also discussed. The experimental results show that for spectrum and time variation, the repeatability of Hessian-Laplace detector achieves 40% whichperforms best, followed by Harris-Laplace and DoG, whereas MSER performs worst. For image scale changes, MSER outperforms other detectors and its repeatability is 35%, followed by Hession-Laplace, whereas Harris-Laplace and DoG perform worse than other detectors.
-
Key words:
- remote sensing images /
- image matching /
- interest point detection /
- repeatability
-
叶沅鑫,单杰,彭剑威,等. 利用局部自相似进行多光谱遥感影像自动配准[J]. 测绘学报,2014,43(3):268-275. YE Yuanxin, SHAN Jie, PENG Jianwei, et al. Automated multispectral remote sensing image registration using local self-similarity[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(3):268-275. 张帅毅,李永树,蔡国林. 基于贝叶斯决策的航空影像自动配准[J]. 西南交通大学学报,2015,50(1):161-166. ZHANG Shuaiyi, LI Yongshu, CAI Guolin. Aerial image registration based on Bayesian decision theory[J]. Journal of Southwest Jiaotong University, 2015, 50(1):161-166. YE Yuanxin, SHEN Li, WANG Jicheng, et al. Automatic matching of optical and SAR imagery through shape property[C]//2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).:IEEE, 2015:1072-1075. 叶沅鑫,单杰,熊金鑫,等. 一种结合SIFT和边缘信息的多源遥感影像匹配方法[J]. 武汉大学学报:信息科学版,2013,38(10):1148-1151. YE Yuanxin, SHAN Jie, XIONG Jinxin, et al. A matching method combining SIFT and edge information for multi-source remote sensing images[J]. Geomatics and Information Science of Wuhan University, 2013, 38(10):1148-1151. ZITOV B, FLUSSER J. Image registration methods:a survey[J]. Image Vis. Comput., 2003, 21(11):977-1000. YE Yuanxin, SHAN Jie. A local descriptor based registration method for multispectral remote sensing images with non-linear intensity differences[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 90:83-95. SMITH S, BRADY J. SUSAN:a new approach to low level image processing[J]. International Journal of Computer Vision, 1997, 23(1):45-78. LINDEBERG T. Feature detection with automatic scale selection[J]. International Journal of Computer Vision, 1998, 30(2):79-116. MIKOLAJCZYK K, SCHMID C. Scale affine invariant interest point detectors[J]. International Journal of Computer Vision, 2004, 60(1):63-86. MIKOLAJCZYK K, TUYTELAARS T, SCHMID C, et al. A comparison of affine region detectors[J]. International Journal of Computer Vision, 2005, 65(1):43-72. LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2):91-110. MATAS J, CHUM O, URBAN M, et al. Robust wide-baseline stereo from maximally stable extremal regions[J]. Image and Vision Computing, 2004, 22(10):761-767. TUYTELAARS T, MIKOLAJCZYK K. Local invariant feature detectors:a survey[J]. Foundations and Trends in Computer Graphics and Vision, 2008, 3(3):177-280. SCHMID C, MOHR R, BAUCKHAGE C. Evaluation of interest point detectors[J]. International Journal of Computer Vision, 2000, 37(2):151-172. AANS H, DAHL A L, STEENSTRUP PEDERSEN K. Interesting interest points[J]. International Journal of Computer Vision, 2011, 97(1):18-35.
点击查看大图
计量
- 文章访问数: 532
- HTML全文浏览量: 80
- PDF下载量: 267
- 被引次数: 0