Elasto-Plastic Dynamic Responses of Reinforced Concrete Slabs under Rockfall Impact
-
摘要: 滚石冲击钢筋混凝土板过程伴随复杂的能量转化,基于经验或Hertz接触理论的传统钢筋混凝土板抗冲击设计与实际状况有较大出入.为探索一种更加高效准确的滚石冲击响应计算方法,引入Olsson针对正交各向异性复合板提出的冲击动力控制方程,结合弹塑性接触理论开展滚石冲击钢筋混凝土板动力响应分析,并与Hertz解及动力有限元解进行对比,结果表明:相同条件下,Hertz理论解由于仅考虑板的弹性变形,其峰值冲击力较弹塑性理论解和动力有限元解分别增大31.8%和77.1%,其最大压痕深度较后两者分别增大17.3%和61.8%,而基于弹塑性接触准则的冲击动力响应更加接近于动力有限元解,趋于真实,且避免了复杂建模过程,高效可行.Abstract: The process of rockfall impact on reinforced concrete slabs is accompanied by complex energy transformation. The traditional engineering design, which was based on experience or the Hertz contact law, has great deviation with actuality. In order to develop an efficient and accurate calculation method of rock-fall impact response, we adopted dynamic equations proposed by Olsson for orthotropic composite plates under impact loads, meanwhile compared the dynamic responses calculated according to the elasto-plastic contact law, the Hertz contact law and the dynamic finite element method. The results show that, in the same conditions, as the plastic deformations of slabs were considered in the Hertz solution, its peak contact force was larger than the elasto-plastic solution and dynamic finite element solution by 31.8% and 77.1% respectively. Moreover, the maximum indentation derived from Hertz solution was increased by 17.3% and 61.8% than the elasto-plastic solution and dynamic finite element solution, respectively. The elasto-plastic dynamic responses were closer to the dynamic finite element solutions than Hertz dynamic responses, demonstrating that the proposed elasto-plastic method is efficient and accurate without complicated modeling process.
-
Key words:
- rock-fall /
- impact /
- reinforced concrete slab /
- elastic-plastic theory
-
黄志堂,强士中,崔圣爱. 钢管混凝土叠合柱高墩的概率抗震能力模型[J]. 西南交通大学学报,2015,50(5):852-857. HUANG Zhitang, QIANG Shizhong, CUI Shengai. Probabilistic seismic capacity model for high pier of CFST composite column[J]. Journal of Southwest Jiaotong University, 2015, 50(5):852-857. 刘成清,陈林雅,陈驰,等. 柔性钢棚洞结构在落石灾害防治中的应用研究[J]. 西南交通大学学报,2015,50(1):110-117. LIU Chengqing, CHEN Linya, CHEN Chi, et al. Application of flexible shed-tunnel structure to rock-fall hazard prevention[J]. Journal of Southwest Jiaotong University, 2015, 50(1):110-117. SUN C T. An analytical method for evaluation impact damage energy of laminated composites[C]//ASTM Special Technical Publication.:American Society for Testing, 1977:427-440. CHATTOPADHYAY S, SAXENA R. Combined effects of shear deformation and permanent indentation on the impact response of elastic plates[J]. International Journal of Solids and Structures, 1991, 27(13):1739-1745. OLSSON R. Impact response of orthotropic composite plates predicted from a one-parameter differential equation[J]. AIAA Journal, 1992, 30(6):1587-1596. OLSSON R. Mass criterion for wave controlled impact response of composite plates[J]. Applied Science and Manufacturing, 2000, 31(8):879-887. OLSSON R. Analytical prediction of large mass impact damage in composite laminates[J]. Applied Science and Manufacturing, 2001, 32(9):1207-1215. OLSSON R. Closed form prediction of peak load and delamination onset under small mass impact[J]. Composite Structures, 2003, 59(3):341-349. OLSSON R, DONADON M V, FALZON B G. Delamination threshold load for dynamic impact on plates[J]. International Journal of Solids and Structures, 2006, 43(10):3124-3141. ZHENG D, BINIENDA W K. Effect of permanent indentation on the delamination threshold for small mass impact on plates[J]. International Journal of Solids and Structures, 2007, 44:8143-8158. CAIRNS D S. A simple elasto-plastic contact law for composites[J]. Reinforced Plastics and Composites, 1991, 10(4):423-433. CHOI H Y, CHANG F K. A Model for predicting damage in graphite/epoxy laminated composites resulting from low-velocity point impact[J]. Composite Materials, 1992, 26(14):2134-2169. JOHNSON K L. Contact mechanics[M]. Cambridge:Cambridge University Press, 1985:125-132. 王东坡,何思明,欧阳朝军,等. 滚石冲击荷载下棚洞钢筋混凝土板动力响应研究[J]. 岩土力学,2013,34(3):881-886. WANG Dongpo, HE Siming, OUYANG Chaojun, et al. Study of dynamic response of shed reinforced concrete slab to impact load of rock-fall[J]. Rock and Soil Mechanics, 2013, 34(3):881-886. 何思明. 滚石对防护结构的冲击压力计算[J]. 工程力学,2010,27(9):175-180. HE Siming. Calculation of compact pressure of rock-fall on shield structures[J]. Engineering Mechanics, 2010, 27(9):175-180. YIGIT A S, CHRISTOFOROU A P. On the impact of a spherical indenter and an elastic-plastic transversely isotropic half-space[J]. Composites Engineering, 1994, 4(11):1143-1152. CHRISTOFOROU A P, YIGIT A S. Characterization of impact in composite plates[J]. Composite Structures, 1998, 43(1):15-24. CHRISTOFOROU A P. Impact dynamics and damage in composite structures[J]. Composite Structures, 2001, 52(2):181-188. OLSSON R. Analytical model for delamination growth during small mass impact on plates[J]. International Journal of Solids and Structures, 2010, 47(21):2884-2892. 王虎,胡长顺,王秉纲. 连续配筋混凝土路面动荷响应分析[J]. 工程力学,2001,18(5):119-126. WANG Hu, HU Changshun, WANG Binggang. Responses of continuously reinforced concrete pavement under transient load[J]. Engineering Mechanics, 2001, 18(5):119-126. 裴向军,黄润秋,李世贵. 强震崩塌岩体冲击桥墩动力响应研究[J]. 岩石力学与工程学报,2011,30(增刊2):3995-4001. PEI Xiangjun, HUANG Runqiu, LI Shigui. Study of dynamic response of brige pier shocked by falling rock induced by itensive earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(Sup.2):3995-4001. 王伟,徐卫亚. 一个新的岩石力学测定方法[J]. 岩土力学,2008,29(增刊):538-544. WANG Wei, XU Weiya. A new method of testing rock properties[J]. Rock and Soil Mechanics, 2008, 29(Sup.):538-544. 何思明,沈均,吴永. 滚石冲击荷载下棚洞结构动力响应[J]. 岩土力学,2011,32(3):781-788. HE Siming, SHEN Jun, WU Yong. Rock shed dynamic response to impact of rock-fall[J]. Rock and Soil Mechanics, 2011, 32(3):781-788.
点击查看大图
计量
- 文章访问数: 515
- HTML全文浏览量: 63
- PDF下载量: 183
- 被引次数: 0