Influence of Skew Wind on Snow Drifting and Snow Deposition Around a Ground Object
-
摘要: 为考察偏斜风效应下地面结构周边地表积雪形态及形成机理,基于欧拉框架多相流理论,采用计算流体动力学(CFD)方法,模拟了不同来流风向下立方体建筑的特征绕流场,对比了地表侵蚀积雪预测指标的差异.研究结果表明:来流风向的改变影响模型周边近地流分离及附着的形成,决定了地表剪切状态,顺风体轴方向,风向角的增大(045)使侵蚀极值位置总体后移,模型背风侧极值位置随风向的改变较迎风侧敏感;空间吹雪浓度分布受模型特征扰流及风向重分配效应影响显著,决定了当地沉积强度,横风体轴方向,靠近来流侧近地吹雪浓度始终大于出流侧,两侧浓度差随风向角的增大(045)而增大.单位时间下地物水平正交方向的侵蚀沉积量随风向的改变呈现此消彼长的规律,风向对局部地表积雪形态的调整机制近似动态平衡.Abstract: To clarify the mechanism of snow drifting and snow deposition caused by skew wind around the ground building, using CFD (Computational Fluid Dynamics) method, the characteristic ambient flows around a cubic building under different wind directions were simulated and indicators for erosion and deposition in the prediction model were compared. The results indicate that wind directions () affect the boundary-layer separation and reattachment and determine the shear state of ground surface. In the x body-axis direction, extreme erosion positions move backward generally with the increasing of (045), and the changes of the extreme positions at the leeward side are more sensitive to than those at the windward side. The distributions of drifting snow densities are significantly influenced by the feature ambient flows and the redistribution effect caused by skew wind, which determine the surface deposition. In the y body-axis direction, the drifting snow densities near the ground at the inlet side are always larger than the one at the outlet side, and the concentration difference increases with (045). The increase of snow erosion and deposition rate in one direction leads to decrease in its orthogonal direction, and the skew wind can flexibly adjust the local snow coverage to quasi-dynamic equilibrium.
-
Key words:
- snow drift /
- feature ambient flows /
- numerical simulation /
- CFD /
- cube model /
- skew wind
-
周晅毅,顾明,朱忠义,等. 首都国际机场3号航站楼屋面雪荷载分布研究[J]. 同济大学学报:自然科学版,2007,35(9):1193-1196. ZHOU Xuanyi, GU Ming, ZHU Zhongyi, et al. Study on snow loads on roof of terminal 3 of beijing capital international airport[J]. Journal of Tongji University:Natural Science Edition, 2007, 35(9):1193-1196. 周晅毅,顾明,李雪峰. 大跨度屋盖表面风致雪压分布规律研究[J]. 建筑结构学报,2008,29(2):7-12. ZHOU Xuanyi, GU Ming, LI Xuefeng. Study on wind-induced snow pressure on large-span roof[J]. Journal of Building Structures, 2008, 29(2):7-12. 顾明,黄友钦,赵明伟. 风雪共同作用下门式刚架厂房的动力稳定[J]. 同济大学学报:自然科学版,2011,39(9):1266-1272. GU Ming, HUANG Youqin, ZHAO Mingwei. Dynamic instability of light-weight steel structures with portal frames under wind and snow loads[J]. Journal of Tongji University:Natural Science Edition, 2011, 39(9):1266-1272. 黄友钦,顾明. 风雪耦合作用下单层柱面网壳的动力稳定[J]. 工程力学,2011,28(11):210-217. HUANG Youqin, GU Ming. DYnamic instability of single-layer reticulated cylindrical shell under coupled wind and snow loads[J]. Engineering Mechanics, 2011, 28(11):210-217. 黄友钦,顾明,周晅毅. 积雪漂移对空间结构动力稳定性的影响[J]. 振动与冲击,2011,30(2):124-129. HUANG Youqin, GU Ming, ZHOU Xuanyi. Influence of snow-drifting on dynamic stability of a spatial structure[J]. Journal of Vibration and Shock, 2011, 30(2):124-129. THⅡS K T. A comparison of numerical simulations and full-scale measurements of snowdrifts around buildings[J]. Wind and Structures, 2000, 3(2):73-81. BEYERS M, WAECHTER B. Modeling transient snowdrift development around complex three-dimensional structures[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96:1603-1615. TOMINAGA Y, OKAZE T, MOCHIDA A, et al. Prediction of snowdrift around a cube using CFD model incorporating effect of snow particles on turbulent flow[C]//The 7th Asia-Pacific Conference on Wind Engineering. Taipei:, 2009:1-8. 李雪峰,周晅毅,顾明,等. 立方体模型周边风致积雪飘移的数值模拟[J]. 同济大学学报:自然科学版,2010,38(8):1135-1140. LI Xuefeng, ZHOU Xuanyi, GU Ming, et al. Numerical simulation on snow drifting around a cube model[J]. Journal of Tongji University:Natural Science Edition, 2010, 38(8):1135-1140. 孙晓颖,洪财滨,武岳,等. 建筑物周边风致雪漂移的数值模拟研究[J]. 工程力学,2014,31(4):141-146. SUN Xiaoying, HONG Caibin, WU Yue, et al. Numerical simulation of snow drifting around building model[J]. Engineering Mechanics, 2014, 31(4):141-146. 李永乐,赵彤,刘多特,等. 铁路风屏障的气动绕流及风吹雪特性研究[J]. 铁道学报,2015,37(6):119-125. LI Yongle, ZHAO Tong, LIU Duote, et al. Aerodynamic ambient flow around railway wind screens and features of drifting snow[J]. Journal of the China Railway Society, 2015, 37(6):119-125. CROWE C T, SCHWARZKOPF J D, SOMMERFELDM, et al. Multiphase flows with droplets and particles[M]. Boca Raton:CRC Press, 2011:74. NAAIM M, NAAIM-BOUVET F, MARTINEZ H. Numerical simulation of drifting snow:erosion and deposition models[J]. Annals of Glaciology, 1998, 26:191-196. 刘多特,李永乐,汪斌. 风雪绕流数值模拟的积雪预测模型研究[J]. 工程力学,2016,33(8):122-131. LIU Duote, LI Yongle, WANG Bin. A numerical prediction model for snow accumulation caused by ambient snowdrift[J]. Engineering Mechanics, 2016, 33(8):122-131. 李永乐,胡朋,蔡宪棠,等. 紧邻高陡山体桥址区风特性数值模拟研究[J]. 空气动力学学报,2011,29(6):770-776. LI Yongle, HU Peng, CAI Xiantang, et al. Numerical simulation of wind characteristics above bridge site adjacent a high-steep mountain[J]. Acta Aerodynamica Sinica, 2011, 29(6):770-776. RO K S, HUNT P G. Characteristic wind speed distributions and reliability of the logarithmic wind profile[J]. Journal of Environmental Engineering, 2007, 133(3):313-318. BINTANJA R. Snowdrift suspension and atmospheric turbulence. Part Ⅱ:results of model simulations[J]. Boundary-Layer Meteorology, 2000, 95(3):369-395. LANGLEBEN M P. The terminal velocity of snowflakes[J]. Quarterly Journal of the Royal Meteorological Society, 1954, 80(346):174-181. 刘多特,李永乐,向活跃. 错列双钝体断面气动绕流干扰效应的数值模拟[J]. 公路交通科技,2014, 31(7):97-102,107. LIU Duote, LI Yongle, XIANG Huoyue. Numerical simulation of aerodynamic ambient flow interference effect on dual bluff body section in staggered arrangement[J]. Journal of Highway and Transportation Research and Development, 2014, 31(7):97-102,107. OIKAWA S, TOMABECHI T, ISHIHARA T. One-day observations of snowdrifts around a model cube[J]. Journal of Snow Engineering of Japan, 1999, 15(4):283-291.
点击查看大图
计量
- 文章访问数: 499
- HTML全文浏览量: 64
- PDF下载量: 223
- 被引次数: 0