Surrogate Model Optimizations for Protective Effects of Railway Wind Barriers
-
摘要: 为确定铁路风屏障的最优参数,基于代理模型方法对风屏障防风效果进行了优化.首先,改进了网格搜索法以优化支持向量机回归模型的参数,并通过算例进行了验证.其次,以设置风屏障时的车辆气动特性为目标函数,建立了风屏障防风效果的优化模型.最后,利用风屏障的风洞试验结果,采用支持向量机回归建立了目标函数的代理模型,对风屏障的高度和透风率进行了优化.研究结果表明:改进的网格搜索法提高了支持向量机模型参数选择的准确性,当风屏障高度为1.91~2.90 m时,最优的风屏障透风率为0.00~0.17;当风屏障高度超过2.50 m后,增加风屏障的高度对防风效果的提高较为有限.Abstract: To determine the optimal parameters of railway wind barriers, the protective effects of wind barriers were optimized by surrogate model methods. Firstly, the grid search method was improved to optimize the parameter of support vector machine regression (SVR) model, and an example was used to validate the parameter selection method. Then, the aerodynamic characteristics of a vehicle in the presence of wind barriers were considered as the objective functions, and the optimization model of the protective effects of wind barriers was presented. Lastly, according to the wind tunnel test results, the surrogate models of the objective functions were obtained by the SVR to optimize the heights and porosities of wind barriers. The results show that the modified grid search methods improve the accuracy of the parameter selections of SVR model. The optimal porosity of wind barriers is 0.00-0.17 when the wind barrier height is 1.91-2.90 m. If the height of the wind barrier is more than 2.50 m, the improvement of protective effect is limited with increase of the wind barrier height.
-
Key words:
- SVR(vector machine regression) /
- wind barrier /
- protective effect /
- surrogate model
-
COLEMAN S, BAKER C J. Reduction of accident risk for high sided road vehicles in cross winds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 44:2685-2695. CHU C, CHANG C, HUANG C, et al. Windbreak protection for road vehicles against crosswind[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2013, 116:61-69. XIANG H Y, LI Y L, WANG B. Aerodynamic interaction between static vehicles and wind barriers on railway bridges exposed to crosswinds[J]. Wind and Structures, 2015, 20(2):237-247. CHARUVISIT S, KIMURA K, FUJINO Y. Effects of wind barrier on a vehicle passing in the wake of a bridge tower in cross wind and its response[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2004, 92(7/8):609-639. HE X H, ZHOU Y F, WANG H F, et a. Aerodynamic characteristics of a trailing rail vehicles on viaduct based on still wind tunnel experiments[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 135:22-33. 李永乐,向活跃,廖海黎. 基于风-车-桥(线)耦合振动的风屏障防风效果研究[J]. 土木工程学报,2014,47(3):97-102. LI Yongle, XIANG Huoyue, LIAO Haili. Wind shielding effect of wind screens based on coupling vibration of wind-vehicle-bridge (lines) systems[J]. Journal of Civil Engineering, 2014, 47(3):97-102. XIANG H Y, LI Y L, CHEN B, et al. Protection effect of railway wind barrier on running safety of train under cross winds[J]. Advances in Structural Engineering, 2014, 17(8):1176-1187. 张田,郭薇薇,夏禾. 侧向风作用下车桥系统气动性能及风屏障的影响研究[J]. 铁道学报,2013,35(7):102-106. ZHANG Tian, GUO Weiwei, XIA He. Aerodynamic characterisitcs of vehicle-bridge system under crosswind and effect of wind barrier[J]. Jouranl of the China Railway Society, 2013, 35(7):102-106. 向活跃,李永乐,胡喆,等. 铁路风屏障对轨道上方风压分布影响的风洞试验研究[J]. 实验流体力学,2012,26(6):19-23. XIANG Huoyue, LI Yongle, HU Zhe, et al. Effects of wind screen on wind pressure distribution above railway tracks by wind tunnel test[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(6):19-23. 周奇,朱乐东,郭震山. 曲线风障对桥面风环境影响的数值模拟[J]. 武汉理工大学学报,2010,32(10):38-44. ZHOU Qi, ZHU Ledong, GUO Zhenshan. Numerical simulation for curve windshield barrier effects on wind environment around bridge deck[J]. Journal of Wuhan University of Technolgy, 2010, 32(10):38-44. 向活跃,李永乐,廖海黎. 基于DEA的铁路桥梁风屏障防风效果评价[J]. 西南交通大学学报,2012,47(4):546-550. XIANG Huoyue, LI Yongle, LIAO Haili. Evaluation of wind shielding effect of wind screen for railway bridges by DEA method[J]. Journal of Southwest Jiaotong University, 2012, 47(4):546-550. 刘凤华. 加筋土式挡风墙优化研究[J]. 铁道工程学报,2006,37(1):96-99. LIU Fenghua. Study on the optimization of wind-break wall of the reinforced concrete shape type[J]. Journal of Railwya Engineering Society, 2006, 37(1):96-99. 姜翠香,梁习锋. 挡风墙高度和设置位置对车辆气动性能的影响[J]. 中国铁道科学,2006,27(2):66-70. JIANG Cuixiang, LIANG Xifeng. Effect of the vehicle aerodynamic performance caused by the height and position of wind-break wall[J]. China Railway Science, 2006, 27(2):66-70. 黄尊地,梁习锋,钟睦. 基于Kriging模型的挡风墙优化设计[J]. 中南大学学报:自然科学版,2011,42(7):2152-2155. HUANG Zundi, LIANG Xifeng, ZHONG Mu. Optimization of wind-break wall based on Kriging model[J]. Journal of Central South University:Science and Technology, 2011, 42(7):2152-2155. KLEIJNEN J. Kriging metamodeling in simulation:a review[J]. European Journal of Operational Research, 2009, 192:707-716. FORRESTER A, SBESTER A, KEANE A. Engineering design via surrogate modelling:a practical guide[M].:John Wiley Sons Ltd. Publication, 2008:51-62. 赵洪锋,单忠德,刘丰,等. 基于RSM的空心立铣刀多学科多目标优化设计[J]. 西南交通大学学报,2015,50(4):740-746. ZHAO Hongfeng, SHAN Zhongde, LIU Feng, et al. Multidisciplinary multi-objective optimization design of hollow end mill based on response surface method[J]. Journal of Southwest Jiaotong University, 2015, 50(4):740-746. 张静,李柏林,张卫华,等. 基于Kriging模型的改进协同优化算法[J]. 西南交通大学学报,2010,45(4):539-543. ZHANG Jing, LI Bailin, ZHANG Weihua, et al. Improved collaborative optimization algorithm[J]. Journal of Southwest Jiaotong University, 2010, 45(4):539-543. 程耿东. 工程结构优化设计基础[M]. 大连:大连理工大学出版社,2012:323-327. VAPNIK V. Statistical learning theory[M]. John Wiley Sons Ltd. Publication, 1998:443-462. GUNN S. Support vector machines for classification and regression[R].Southampton:University of Southampton, 1998. SMOLA A. Learning with kernels[D]. Berlin:Technische Unverisity Berlin, 1998. HSU C W, CHANG C C, LIN C J. A practical guide to support vector classification[R].Taibei:University of National Taiwan, 2003. HUANG C L, WANG C J A. GA-based feature selection and parameters optimization for support vector machines[J]. Expert Systems with Applications, 2006, 31:231-240. XIANG H Y, LI Y L, WANG B, et al. Numerical simulation of the protective effect of railway wind barriers under crosswinds[J]. International Journal of Rail Transportation, 2015, 3(3):151-163. 向活跃. 高速铁路风屏障防风效果及其自身风荷载研究[D]. 成都:西南交通大学,2013. 叶坤,李人宪. 高速铁路挡风墙高度和距离优化分析[J]. 西南交通大学学报,2014,49(2):240-246.YE Kun, LI Renxian. Optimization analysis of height and distance of shelter wind wall for high-speed railway[J]. Journal of Southwest Jiaotong University, 2014, 49(2):240-246.
点击查看大图
计量
- 文章访问数: 523
- HTML全文浏览量: 60
- PDF下载量: 176
- 被引次数: 0