Optimal Strategy of Clamping Force for Continuously Variable Transmission Based on Slip Ratio Feedback Control
-
摘要: 为了将汽车燃油消耗率降至最低,使发动机稳定在最佳转速区域,对无级变速器(continuously variable transmission,CVT)传统夹紧力控制策略进行了优化.在CVT内部现有传感器装置的基础上,根据滑移率反馈控制方法的总体结构,建立了具有非线性的滑移率动态模型方程,并在设计滑移率反馈控制器过程中,采用分级内、外双环的控制方法,解决夹紧力与速比之间的耦合问题.通过台架试验及CVT整车测试,验证了优化后的夹紧力控制策略的有效性.研究结果表明:在CVT整车百公里急加速、紧急制动以及综合工况下,滑移率反馈控制令整车动力匹配能力优于传统夹紧力控制;夹紧力在满足不发生带轮打滑及使用要求前提下,夹紧力可降低10%,燃油效率总量可提高1%.Abstract: In order to decrease vehicles' fuel consumption rate to the lowest and stabilize the engine running in an optimal rotary speed range, an optimization was made for the traditional clamping force control strategy of the continuously variable transmission (CVT). According to the general structure of the slip ratio feedback control method, a slip ratio dynamic model with nonlinear equations was set up based on measurements from the existing sensor devices inside CVT. For design of the slip ratio feedback controllers, the tight coupling problem between clamping force and speed ratio are solved using a separate inner-and outer-loop control scheme. In addition, bed tests and real tests were conducted to verify the effectiveness of the optimized control strategy for clamping force. The results show that the power matching ability of the CVT vehicle equipped with slip ratio feedback control is superior to that with the traditional clamping force control in all of the 0-100 km/h acceleration test, emergency braking, and comprehensive conditions. Using the slip ratio feedback control, the clamping force can decrease about 10% with non-slip and other application requirements satisfied, and the total fuel efficiency of CVT vehicles can increase 1%.
-
Key words:
- continuously variable transmission /
- slip /
- clamping force /
- ratio
-
GERBERT B G. Skew V-belt pulleys[C]//Proceedings of international conference on continuously variable power transmission. Yolahama:, 1996:1-8. 张伯俊,王谦,郝允志. 汽车无级变速器夹紧力动态安全系数控制研究[J]. 机械传动,2015,39(3):45-49. ZHANG Bojun, WANG Qian, HAO Yunzhi. Study on the dynamic safety sactor control of clamping force of automotive CVT[J]. Journal of Mechanical Transmission, 2015, 39(3):45-49. 韩玲. 无级变速器电液控制系统关键技术研究[D]. 长春:吉林大学,2015. ATAUR R, SAZZAD B, AKM M, et al. Energy efficient electromagnetic actuated CVT system[J]. Journal of Mechanical Science and Technology, 2014, 28(4):1153-1160. LEE H, KIM H. Analysis of primary and secondary thrusts for a metal belt CVT part 1:new formula for speed ratio-torque-thrust relationship considering band tension and block compression[J]. SAE Technical Paper Series, 2000(1):841-849. 韩玲, 张立斌, 安颖,等. 无级变速器电液控制系统关键技术研究[J]. 吉林大学学报:工学版,2014,5(44):1247-1252. HAN Ling, ZHANG Libin, AN Ying, et al. Key technology of the electric-hydraulic system for continuous variable transmission[J]. Journal of Jilin University:Engineering and Technology Edition, 2014, 44(5):1247-1252. 张树培. 汽车无级变速器滑转率与夹紧力研究[D]. 长春:吉林大学,2011. 韩玲,张立斌,安颖. 无级变速器电液控制系统试验分析及故障检测[J]. 西南交通大学学报,2014,49(6):1247-1252. HAN Ling, ZHANG Libin, AN Ying. Electric-hydraulic system for continuously variable transmission test analysis fault detection[J]. Journal of Southwest Jiaotong University, 2014, 49(6):1247-1252. 曹成龙,周云山,高帅,等. 基于滑移率控制的金属带无级变速器夹紧力研究[J]. 中国机械工程,2012,23(23):2893-2897. CAO Chenglong, ZHOU Yunshan, GAO Shuai, et al. Study on clamping force of metal V-belt type CVT based on slip control[J]. China Mechanical Engineering, 2012, 23(23):2893-2897. 周兵, 李永辉, 袁希文,等. 滑模极值搜索算法ABS控制及对汽车侧面稳定性补偿[J]. 振动与冲击,2016,4(35):121-126. ZHOU Bing, LI Yonghui, YUAN Xiwen, et al. Sliding mode extremum-seeking algorithm for control of ABS with vehicle lateral stability improvement[J]. Journal of Vibration and Shock, 2016, 35(4):121-126. 罗勇,孙冬野,秦大同,等. 考虑CVT效率的无级变速车辆最佳经济性控制[J]. 机械工程学报,2010,46(4):80-86. LUO Yong, SUN Dongye, QIN Datong, et al. Fuel optimal control of CVT equipped vehicle with consideration of CVT efficiency[J].Journal of Mechanical Engineering, 2010, 46(4):80-86. NOLL E, SLUIS F, DONGEN T, TOM Dongen, et al. Innovative self-optimising clamping force strategy for the pushbelt CVT[J]. SAE Int. J. Engines, 2009, 2(1):1489-1498. GUEBELI M, MICKLEM J D, BURROWS C R. Maximum transmission efficiency of a steel belt continuously variable transmission[J]. Transaction of the ASME, 1993, 115(4):1044-1048. SUN J D, FU W Y, LEI H, et al. Rotational swash plate pulse continuously variable transmission based on helical gear axial meshing transmission[J]. Springer Journal, 2012, 6(4):1138-1142. PULLES R J, BONSEN B M, STEINBUC H, et al. Slip controller design and implementation in a continuously variable transmission[C]//American Control Conference. Portland:, 2005:102. AKEHURST S, VAUGHAN N D, PARKER D A, et al. Modeling of loss mechanisms in a pushing metal V-belt continuously variable transmission, part 2:pulley deflection losses and total torque loss validation[J]. Proceedings of Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering, 2004, 218(11):1283-1293. SUN J D, FU W Y, LEI H, et al. Rotational swash plate pulse continuously variable transmission based on helical gear axial meshing transmission[J]. Springer Journal, 2012, 6(4):1138-1142.
点击查看大图
计量
- 文章访问数: 528
- HTML全文浏览量: 68
- PDF下载量: 246
- 被引次数: 0