Dynamic Performances of CRTS Ⅲ Prefabricated Slab Track with Anti-vibration Structure in Subgrade-Tunnel Transition Section
-
摘要: 为了设置合理的过渡段长度,最大限度地减小路基与隧道之间变形差对行车安全性和舒适性的影响,基于有限元方法和车辆-轨道垂向耦合动力学理论,建立了列车-轨道-路隧过渡段垂向耦合动力分析模型.以钢轨挠度变化率、车体加速度和轮轨力等作为评价指标,对路隧过渡段动力特性进行分析,提出了路基与隧道内同时设置过渡段时,减振橡胶垫层的刚度建议值和布置方式,以及仅在隧道内设置过渡段时过渡段长度的建议值.研究结果表明:过渡段橡胶垫层的刚度可采用分级过渡的方式,减振橡胶垫层的刚度比不宜超过2;在过渡段,以车体振动加速度为控制指标,从保障行车安全和减小过渡段维修工作量的角度出发,建议隧道内过渡段的设计长度为25~30 m.
-
关键词:
- 减振CRTS Ⅲ型板式无砟轨道 /
- 路隧过渡段 /
- 动力特性 /
- 钢轨挠度变化率
Abstract: In order to choose a proper length of the transition section and minimize negative impacts of the change of rail deflection between the subgrade-tunnel transition section on the track safety and the ride comfort, a vertical coupling dynamic model of CRTS Ⅲ slab track in subgrade-tunnel transition section was established using the finite element method and vehicle-track coupling dynamics theory. In this model, the change rate of rail deflection, vehicle acceleration, and wheel-rail force are taken as evaluation indexes to characterize the dynamic behavior of the system in the transition section. Through analysis, reasonable stiffness and layout of anti-vibration rubber pad is suggested for the transition section with the damping cushion set up both in subgrade and tunnel, and the length of transition section is proposed for the transition section with the damping cushion set up in tunnel only. The results indicate that a hierarchical stiffness of the anti-vibration rubber pad can be applied in the subgrade-tunnel transition section, and the stiffness ratio should be no more than 2. In order to ensure the running safety and reduce the workload of maintenance and repair in the subgrade-tunnel transition section, the length should be within the range of 25-30 m for controlling of the vertical acceleration of car body. -
XU Qingyuan, CHEN Xiaoping, YAN Bin, et al. Study on vibration reduction slab track and adjacent transition section in high-speed railway tunnel[J]. Journal of Vibroengineering, 2015, 17(2):905-916. PAIXAO A, FORTUNATO E, CALCADA R. Transition zones to railway bridges:track measurements and numerical modelling[J]. Engineering Structures, 2014, 80(12):435-443. DOANH B P, LUO Qiang, WEI Yongxing, et al. Dynamics performance of subgrade-tunnel transition on chongqing-suining ballastless track[J]. Journal of Southwest Jiaotong University, 2009, 17(3):223-228. PLOTKIN D, DAVIS D. Bridge approaches and track stiffness[R].:Federal Railroad Administration, 2008. 练松良,王继军. 路桥过渡段轨道结构的动力性能试验研究[J]. 中国铁道科学,2009,30(4):19-23. LIAN Songliang, WANG Jijun. Test study on the dynamic performance of the track structure at the transition section between bridge and plain track[J]. China Railway Science, 2009, 30(4):19-23. 任娟娟,严晓波,徐光辉,等. 底座板脱空对板式无砟轨道行车动力特性的影响[J]. 西南交通大学学报,2014,49(6):961-966. REN Juanjuan, YAN Xiaobo, XU Guanghui, et al. Effects of contact loss underneath concrete roadbed on dynamic performances of slab track-subgrade system[J]. Journal of Southwest Jiaotong University, 2014, 49(6):961-966. 张重王. CRTSⅠ型板式轨道的动力特性及伤损影响研究[D]. 成都:西南交通大学,2015. 蔡成标,徐鹏. 高速铁路无砟轨道关键设计参数动力学研究[J]. 西南交通大学学报,2010,45(4):493-497. CAI Chengbiao, XU Peng. Dynamic analysis of key design parameters for ballastless track of high-speed railway[J]. Journal of Southwest Jiaotong University, 2010, 45(4):493-497. 翟婉明. 车辆-轨道耦合动力学[M]. 北京:科学出版社,2007:265-273. 周毅. CRTSⅢ型板式轨道减振特性研究[D]. 成都:西南交通大学,2011. 胡萍. 高速铁路无砟轨道密集过渡段路基动力试验与仿真分析[D]. 长沙:中南大学,2010. 张家海. CRTSⅠ型板式无砟轨道抬升修复技术研究[J]. 上海铁道科技,2013(4):71-73. ZHANG Jiahai. Study on uplift remedy technology for CRTSⅠslab-type ballastless track[J]. Shanghai Railway Science Technology, 2013(4):71-73. 郑新国,刘竞,李书明,等. 高速铁路沉降无砟轨道结构注浆整体抬升修复关键技术[J]. 铁道建筑,2015(1):93-96. ZHENG Xinguo, LIU Jing, LI Shuming, et al. Key technologies of remedying settlement of high speed railway ballastless track by lifting whole structure and jet-grouting under it[J]. Railway Engineering, 2015(1):93-96. 徐坤. 减振型CRTS Ⅲ板式无砟轨道振动性能研究[D]. 成都:西南交通大学,2015.
点击查看大图
计量
- 文章访问数: 534
- HTML全文浏览量: 77
- PDF下载量: 283
- 被引次数: 0