A Novel Time-Approaching Search Algorithm for Energy-Saving Optimization of Urban Rail Train
-
摘要: 针对地铁列车准点节能运行,提出了基于时间逼近搜索的列车节能优化算法。首先建立城市轨道列车在满足定时运行条件下的节能控制模型,通过庞特利亚金最大值原理得到了列车节能最优控制工况集;其次,推导了列车在不同节能运行模式下的能耗差异;在此基础上,提出了一种将列车运行区间进行分段优化的方法,采用时间逼近搜索求解列车工况转换点的位置,最终达到定时节能运行的目的。以上海地铁3号线铁力路至友谊路线路为算例,与实测负荷过程对比,列车采用本文算法优化后可节能12.5%。Abstract: To ensure energy-saving and punctual operation of urban railway, a time-approaching search method was proposed. The energy-saving control model of urban railway that satisfies timing running was established . A set of optimal conditions for energy-saving control was derived according to the Pontryagin maximum principle. The energy consumption of a train under different energy-saving operations was calculated . On this basis, we presented an optimization method of dividing the train operation period into sections. The change point of train operation is determined using time-approaching search method to meet the requirements of energy-saving and timing. A section from Tieli Road to Youyi Road of Shanghai Metro Line 3 is taken as an example. Compared with measurement results in the practical loading process, the energy comsuption is reduced by 12.5% using time-approaching search algorithm.
-
Key words:
- Urban rail transit /
- energy saving control /
- time-approach /
- optimization
-
唐海川,王青元,冯晓云. 地铁列车追踪运行的节能控制与分析[J]. 铁道学报,2015,37(1): 37-43. TANG Haichuan, WANG Qingyuan, FENG Xiaoyun. Energy saving control of metro train tracing operation[J]. Journal of the China Railway Society, 2015, 37(1): 37-43. LIU R R, GOLOVITCHER I M. Energy-efficient operation of rail vehicles[J]. Transportation Research Part A: Policy and Practice, 2003, 37(10): 917-932. LU S, HILLMANSEN S, HO T K, et al. Single-train trajectory optimization[J]. Intelligent Transportation Systems, IEEE Transactions on, 2013, 14(2): 743-750. KO H, KOSEKI T, MIYATAKE M. Application of dynamic programming to optimization of running profile of a train[J]. Computers in Railways IX, 2004(15): 103-112. BOCHARNIKOV Y V, TOBIAS A M, ROBERTS C, et al. Optimal driving strategy for traction energy saving on DC suburban railways[J]. Electric Power Applications, IETE, 2007, 1(5): 675-682. CHUANG H J, CHEN C S, LIN C H, et al. Design of optimal coasting speed for saving social cost in mass rapid transit systems[C]//Proceedings of the Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies. Piscataway: IEEE Press, 2008: 2833-2839. ACIKBAS S, SYLEMEZ M T. Coasting point optimization for mass rail transit lines using artificial neural networks and genetic algorithms[J]. Electric Power Applications, IET, 2008, 2(3): 172-182. CHEVRIER R, MARLIEERE G, VULTURESCU B, et al. Multi-objective evolutionary algorithm for speed tuning optimization with energy saving in railway: application and case study.(2011-01-01)[2015-05-22]. https://www.researchgate.net/publication/50365605. 杨利军,胡用生,孙丽霞. 城市轨道交通节能线路仿真算法[J]. 同济大学学报:自然科学版,2012,40(2): 235-240. YANG Lijun, HU Yongsheng, SUN Lixia. Energy-saving track profile of urban mass transit[J]. Journal of Tongji University: Natural Science, 2012, 40(2): 235-240. WANG Penling, LIN Xuan, LI Yuezong. Optimization analysis on the energy saving control for trains with adaptive genetic algorithm[C]//Systems and Informatics (ICSAI), 2012 International Conference on. Yantai: IEEE, 2012: 439-443. 王鹏玲,林轩,李跃宗,等. 自适应遗传算法在列车节能优化中的应用[J]. 计算机仿真,2012,29(11): 350-354. WANG Pengling, LIN Xuan, LI Yuezong, et al. Energy saving train operation optimization with adaptive genetic algorithm[J]. Computer Simulation, 2012, 29(11): 350-354. 刘炜,李群湛,郭蕾,等. 基于多种群遗传算法的城轨列车节能运行优化研究[J]. 系统仿真学报,2010,22(4): 921-925. LIU Wei, LI Qunzhan, GUO Lei, et al. Study of urban railway energy saving train control optimization based on multi-population genetic algorithm[J]. Journal of System Simulation, 2010, 22(4): 921-925. 饶忠. 列车牵引计算[M]. 北京:中国铁道出版社,2006: 48-53. GU Qing, TANG Tao, GAO Fang, et al. Energy-efficient train operation in urban rail transit using real-time traffic information[J]. Intelligent Transportation Systems, IEEE Transactions on, 2014, 15(3): 1216-1233. 王青元,冯晓云. 考虑再生制动能量利用的高速列车节能最优控制仿真研究[J]. 中国铁道科学,2015,36(1): 96-103. WANG Qingyuan, FENG Xiaoyun. Simulation study on optimal energy-efficient control of high speed train considering regenerative brake energy[J]. China Railway Science, 2015, 36(1): 96-103. 韩蕙心,吴鹏,吴杰,等. 基于多目标差分进化算法的列车惰行控制[J]. 计算机应用,2013,33(增刊2): 286-289. HAN Huixin, WU Peng, WU Jie, et al. Coast control of urban train based on multi-objective differential evolution algorithm[J]. Journal of Computer Applications, 2013, 33(Sup.2): 286-289.
点击查看大图
计量
- 文章访问数: 588
- HTML全文浏览量: 86
- PDF下载量: 259
- 被引次数: 0