• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于博弈论的公平安全两方计算协议

王洁

王洁. 基于博弈论的公平安全两方计算协议[J]. 西南交通大学学报, 2016, 29(5): 902-909. doi: 10.3969/j.issn.0258-2724.2016.05.012
引用本文: 王洁. 基于博弈论的公平安全两方计算协议[J]. 西南交通大学学报, 2016, 29(5): 902-909. doi: 10.3969/j.issn.0258-2724.2016.05.012
WANG Jie. Fair Secure Two-Party Computation Protocol Based on Game Theory[J]. Journal of Southwest Jiaotong University, 2016, 29(5): 902-909. doi: 10.3969/j.issn.0258-2724.2016.05.012
Citation: WANG Jie. Fair Secure Two-Party Computation Protocol Based on Game Theory[J]. Journal of Southwest Jiaotong University, 2016, 29(5): 902-909. doi: 10.3969/j.issn.0258-2724.2016.05.012

基于博弈论的公平安全两方计算协议

doi: 10.3969/j.issn.0258-2724.2016.05.012
详细信息
    作者简介:

    王洁(1977-),女,副教授,研究方向为信息安全,E-mail:lktwj0801@163.com

Fair Secure Two-Party Computation Protocol Based on Game Theory

  • 摘要: 针对传统安全两方计算无法实现完全公平性的问题,结合博弈论方法,将参与者看作是理性的,提出了理性安全两方计算协议。首先,在扩展式博弈框架下,给出安全两方计算的博弈模型;其次,根据博弈模型描述,给出理性安全两方计算理想函数FRPCP以及理性安全两方计算协议RPCP;最后对协议的安全性、公平性及纳什均衡进行了分析。分析结果表明,在混合模型下,协议RPCP能安全地实现理想函数FRPCP,并且在BDH困难假设下,协议RPCP中各理性参与者的最佳策略是选择合作,当博弈达到纳什均衡时,参与者双方能公平地获得计算结果。

     

  • YAO A C. Protocols for secure computation[C]//Proc. of the 23rd IEEE Symposium on Foundations of Computer Science (FOCS). Los Alamitos: IEEE Computer Society Press, 1982: 160-164.
    GOLDREICH O, MICALI S, WIGDERSON A. How to play any mental game[C]//Proc. of the 19th Annual ACM Symposium on Theory of Computing (STOC). New York: ACM Press, 1987: 218-229.
    GOLDWASSER S. Multi-party computation: past and present[C]//Proc. of the 16th Annual ACM Symposium on Principles of Distributed Computing. New York: ACM Press, 1997: 21-24
    GOLDREICH O. Foundations of cryptography: volume 2, basic applications[M]. Cambridge: Cambridge University Press, 2004: 79-92.
    BLAKE I F, KOLESNIKOV V. Strong condition oblivious transfer and computing on intervals[G]//Proc. of Advances in Cryptology. Berlin: Springer, 2004: 515-529.
    李顺东,戴一奇,游启友. 姚氏百万富翁问题的高效解决方案[J]. 电子学报,2005,33(5): 769-773. LI Shundong, DAI Yiqi, YOU Qiyou. An efficient solution to Yao' millionaires' problem[J]. Acta Electronica Sinica, 2005, 33(5): 769-773.
    LIN H Y, TZENG W G. An efficient solution to the millionaires problem based on homomorphic encryption[C]//In ASIA crypto logy 2005. Berlin: Springer, 2005: 456-466.
    LINDELL Y, PINKAS B. A proof of Yao's protocol for secure two-party computation[J]. Journal of Cryptology, 2009, 22(5): 161-188.
    唐春明,石桂花,姚正安. 排序问题的安全多方计算协议[J]. 中国科学:信息科学,2011,41(7): 789-797. TANG Chunming, SHI Guihua, YAO Zheng'an. Secure multi-party computation protocol for sequencing problem[J]. Scientia Sinica Informationis, 2011, 41(7): 789-797.
    田有亮,彭长根,马建峰,等. 通用可组合公平安全多方计算协议[J]. 通信学报,2014,35(2): 54-62. TIAN Youliang, PENG Changgen, MA Jianfeng, et al. Universally composable secure multiparty computation protocol with fairness[J]. Journal on Communications, 2014, 35(2): 54-62.
    CLEVE R. Limits on the security of coin flips when half the processors are faulty[C]// In 18th Annual ACM Symposium on Theory of Computing. Berkeley:, 1986: 364-369.
    GORDON D, HAZAY C, KATZ J, et al. Complete fairness in secure two-party computation[C]//Proc of the 40th Annual ACM Symposium on Theory of Computing (STOC). New York: ACM Press, 2008: 413-422.
    HALPERN J, TEAGUE V. Rational secret sharing and multiparty computation[C]//Proc of the 36th Annual ACM Symposium on Theory of Computing(STOC). New York: ACM Press, 2004: 623-632.
    KOL G, NAOR M. Games for exchanging information[C]//Proc. of the 40th Annual ACM Symposium on Theory of Computing(STOC). New York: ACM, 2008: 423-432.
    ABRAHAM I, DOLEV D, GONEN R, et al. Distributed computing meets game theory: Robust mechanisms for rational secret sharing and multiparty computation[C]//Proc. of the 25th ACM symposium on Principles of distributed computing(PODC'06). New York: ACM, 2006: 53-62.
    LYSYANSKAYA A, TRIANDOPOULOS N. Rationality and adversarial behavior in multiparty computation[G]//Proc. the 26th Annual Cryptology. Berlin: Springer, 2006: 180-197.
    ASHAROV G, CANETTI R, HAZAY C. Towards a game theoretic view of secure computation[G]//Proc. of the 30th Annual International Conference on the Theory and Applications of Cryptographic Techniques. Berlin: Springer, 2011: 426-445.
    GROCE A, KATZ J. Fair computation with rational player[G]//Proc. of the 30th Annual International Conference on the Theory and Applications of Cryptographic Techniques. Berlin: Springer, 2012: 81-98.
    张恩,蔡永泉. 理性的安全两方计算协议[J]. 计算机研究与发展,2013,50(7): 1409-1417. ZHANG En, CAI Yongquan. Rational secure two-party computation protocol[J]. Journal of Computer Research and Development, 2013, 50(7): 1409-1417.
    王伊蕾,郑志华,王皓,等. 满足可计算序贯均衡的理性公平计算[J]. 计算机研究与发展,2014,51(7): 1527-1537. WANG Yilei, ZHENG Zhihua, WANG Hao, et al. Rational fair computation with computational sequential equilibrium[J]. Journal of Computer Research and Development, 2014, 51(7): 1527-1537.
    OSBORNE M, RUBINSTEIN A. A course in game theory[M]. Cambridge: MIT Press, 2004: 10-15.
    KATZ J. Bridging game theory and cryptography:recent results and future directions[G]//Proc. of the 5th Theory of Cryptography Conf(TCC 2008). Berlin: Springer, 2008: 251-25.
  • 加载中
计量
  • 文章访问数:  552
  • HTML全文浏览量:  69
  • PDF下载量:  167
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-21
  • 刊出日期:  2016-10-25

目录

    /

    返回文章
    返回