Modelling and Analysis of Combined Co-phase Traction Power Supply System Based on Vx Connection Traction Transformer
-
摘要: 作为新一代牵引供电系统的关键技术,同相供电系统设计需要匹配牵引变压器接线方式,优化电能质量综合补偿策略,降低潮流控制器(PFC)容量及其造价。针对高速和重载铁路推广采用的自耦变压器(AT)供电方式和Vx接线牵引变压器,设计了一种组合式同相供电系统。首先,基于该系统各端口接线角关系,建立了三相电网与单相牵引负荷之间的电气量变换模型;其次,利用三相电压不平衡与无功功率综合补偿理论,将相关电能质量限值为约束条件,给出了组合式同相供电系统各端口补偿电流计算方法,提出了潮流控制器动态跟踪补偿控制方案,与已有补偿方案相比,在达到相同补偿目标时所需补偿容量可以减少10%~58%;最后,通过对多种牵引负荷工况下系统运行特性的仿真模拟,验证了上述补偿模型的正确性和控制策略的有效性。Abstract: As the key technology of new generation traction power supply system,the design of co-phase traction power supply system should match different connection traction transformers to optimize the comprehensive compensation strategy of power quality and reduce the capacity and cost of power flow controller (PFC) . A new scheme of combined co-phase traction power supply system was developed for high-speed and heavy-haul railways, which adopts auto-transformer (AT)traction mode and Vx connection transformer. First, based on the relationship of the connection angles of different ports, the model for the electrical parameter transformation between three-phase power grid and single-phase traction load was built. Second, according to the principle of comprehensive compensation of three-phase unbalanced voltage and reactive power, the operation current calculation formula for each port was deduced with the limited power quality as a constraint. Further, the dynamic compensation control scheme of PFC was presented. Compared with the current compensation schemes, it can ensure the compensation targets with the decrease of 10%-58% in the compensation capacity. Finally, the compensation model and control strategy are verified by the simulation on the operating characteristics of the proposed system under different loads verified .
-
李群湛. 我国高速铁路牵引供电发展的若干关键技术问题[J]. 铁道学报,2010,32(4): 119-124. LI Qunzhan. On some technical key problems in the development of traction power supply system for high-speed railway in China[J]. Journal of the China Railway Society, 2010, 32(4): 119-124. 李群湛. 论新一代牵引供电系统及其关键技术[J]. 西南交通大学学报,2014,49(4): 559-568. LI Qunzhan. On new generation traction power supply system and its key technologies for electrification railway[J]. Journal of Southwest Jiaotong University, 2014, 49(4): 559-568. 张秀峰,谢杰. 同相供电有源补偿的特性与最小容量[J]. 西南交通大学学报,2011,46(3): 445-450. ZHANG Xiufeng, XIE Jie. Features and minimum capacity of active compensation in co-phase power supply[J]. Journal of Southwest Jiaotong University, 2011, 46(3): 445-450. 陈民武,尚国旭,智慧,等. 高速铁路牵引变压器容量与配置方案优化研究[J]. 中国铁道科学,2013,34(5): 70-75. CHEN Minwu, SHANG Guoxu, ZHI Hui, et al. Optimization on the capacity and configuration scheme for traction transformer of high speed railway[J]. China Railway Science, 2013, 34(5): 70-75. 张丽艳,李群湛,易东,等. 同相供电系统潮流控制器容量的优化配置[J]. 电力系统自动化,2013,37(8): 59-64. ZHANG Liyan, LI Qunzhan, YI Dong, et al. Capacity optimization of power flow controller used in a co-phase traction power supply system[J]. Automation of Electric Power Systems, 2013, 37(8): 59-64. 魏光. 基于V型接线的同相牵引供电系统[J]. 电力自动化设备,2010,30(12): 60-65. WEI Guang. Co-phase traction power supply system based on V connection[J]. Electric Power Automation Equipment, 2010, 30(12): 60-65. 张秀峰,李群湛,吕晓琴. 基于有源滤波器的V,v接同相牵引供电系统[J]. 中国铁道科学,2006,27(2): 98-13. ZHANG Xiufeng, LI Qunzhan, L Xiaoqin. V,v Connection co-phase power supply system based on active power filter[J]. China Railway Science, 2006, 27(2): 98-13. 陈民武,李群湛,魏光. 新型同相牵引供电系统设计与评估[J]. 中国铁道科学,2009,30(5): 76-81. CHEN Minwu, LI Qunzhan, WEI Guang. The design and evaluation of new co-phase traction power supply system[J]. China Railway Science, 2009, 30(5): 76-81. SHU Zeliang, XIE Shaofeng, LI Qunzhan. Single-phase back-to-back converter for active power balancing,reactive power compensation, and harmonic filtering in traction power system[J]. IEEE Transactions on Power Electronics, 2011, 26(2): 334-343. 李群湛. 牵引变电所电气分析及综合补偿技术[M]. 北京:中国铁道出版社,2006: 72-93. DAI Ningyi, HUANG Mincong, LAO Kengweng, et al. Modeling and control of a railway power conditioner in co-phase traction power system under partial compensation[J]. IET Power Electronics, 2014, 7(5): 1044-1054. SHU Zeliang, XIE Shaofeng, LU Ke, et al. Digital detection, control, and distribution system for co-phase traction power supply application[J]. IEEE Transactions on Industrial Electronics, 2013, 60(5): 1831-1839. 冯金博,解绍锋,邢晓乾,等. 电气化铁路同相供电试验系统模拟牵引负载方案研究[J]. 铁道学报,2010,32(6): 29-33. FENG Jinbo, XIE Shaofeng, XING Xiaoqian, et al. Study on simulated scheme of traction load in electrified railway co-phase power supply test system[J]. Journal of the China Railway Society, 2010, 32(6): 29-33. LAO Kengweng, DAI Ningyi, LIU Weigang, et al. Hybrid power quality compensator with minimum DC operation voltage design for high speed traction power systems[J]. IEEE Transactions on Power Electronics, 2013, 28(4): 2024-2036. 刘钊,刘邦银,段善旭,等. 链式静止同步补偿器的直流电容电压平衡控制[J]. 中国电机工程学报,2009,29(30): 7-11. LIU Zhao, LIU Bangyin, DUAN Shanxu, et al. DC capacitor voltage balancing control for cascade multilevel STATCOM[J]. Chinese Journal of Electrical Engineering, 2009, 29(30): 7-11.
点击查看大图
计量
- 文章访问数: 648
- HTML全文浏览量: 94
- PDF下载量: 237
- 被引次数: 0