Short-Term Traffic Flow Prediction of Airspace Sectors Based on Bayesian Estimation Theory
-
摘要: 为准确把握空域扇区流量分布态势及未来变化趋势,提出了一种基于贝叶斯估计的短时空域扇区交通流量预测方法.首先,通过解析空域系统内航空器原始雷达数据,提取各扇区历史运行信息,建立了多扇区聚合交通流模型;其次,采用贝叶斯估计理论对模型参数进行最优估计和动态更新,预测了空域扇区交通流量的未来演变趋势及其不确定范围;最后,选取国内5个典型繁忙扇区为例,以5 min为时间段,以未来1 h为预测范围,对所提预测方法进行了验证.研究结果表明:85%以上时段交通流量预测结果的绝对误差在3架以内,平均绝对误差均在2架次以内,预测结果的稳定性较好,可充分反映各空域扇区之间短时交通流的动态性和不确定性,符合空中交通的实际情况.Abstract: To accurately forecast the air traffic flow distribution in airspace sectors and its development trend in the future, a short-term traffic flow prediction method based on Bayesian estimation theory is proposed. First, the operational history data of various sectors in the airspace system are extracted by parsing raw radar data of the aircraft within the airspace system. On this basis, an aggregate multi-sector traffic flow model is established. Then, Bayesian estimation theory is adopted to predict the future trend of airspace sector traffic flow and its uncertainty intervals by estimating and updating the optimal parameter of the aggregate multi-sector traffic flow model dynamically. Finally, the proposed method is verified on a set of operational history data of five air route sectors, taking 5 min as one time step to predict the short-term air traffic flow in the next one hour. The results show that the absolute error of the predicted results of more than 85% time steps is less than 3, the average absolute error is less than 2, and the stability of the predicted results is well. The proposed method can adequately reflect the dynamics and uncertainty in the airspace system operation, and hence is well in line with the practice.
-
Key words:
- air traffic control /
- short-term flow prediction /
- multiple sectors /
- Bayesian estimation /
- uncertainty /
- radar data
-
CASTRO N M, JEONG Y S, JEONG M K. Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions[J]. Expert Systems with Applications, 2009, 36(3):6164-6173. MAI T, GHOSH B, WILSON S. Multivariate short-term traffic flow forecasting using Bayesian vector autoregressive moving average model[C]//Transportation Research Board 91st Annual Meeting. Washington D. C.:TRB, 2012:3728-3740. 樊娜,赵祥模,戴明,等. 短时交通流预测模型[J]. 交通运输工程学报,2012,12(4):114-119.FAN N, ZHAO X M, DAI M. Short-term traffic flow prediction model[J]. Journal of Transportation Engineering, 2012, 12(4):114-119. 窦慧丽,刘好德,吴志周,等. 基于小波分析和ARIMA模型的交通流预测方法[J]. 同济大学学报:自然科学版,2009,37(4):486-494.DOU H L, LIU H D, WU Z Z, et al. Study of traffic flow prediction based on wavelet analysis and autoregressive integrated moving average model[J]. Journal of Tongji University:Natural Science, 2009, 37(4):486-494. 高慧,赵建玉,贾磊. 短时交通流预测方法综述[J]. 济南大学学报:自然科学版,2008,22(1):88-94.GAO H, ZHAO J Y, JIA L. Summary of short-time traffic flow forecasting methods[J]. Journal of University of Jinan:Natural Science, 2008, 22(1):88-94. 崔德光,吴淑宁,徐冰. 空中交通流量预测的人工神经网络和回归组合方法[J]. 清华大学学报:自然科学版,2005,45(1):96-99.CUI Deguang, WU Shuning, XU Bing. Air traffic flow forecasts based on artificial neural networks combined with regression methods[J]. Journal of Tsinghua University:Natural Science, 2005, 45(1):96-99. VLAHOGIANNI E I, KARLAFTIS M G, GOLIAS J C. Optimized and meta-optimized neural networks for short-term traffic flow prediction:a genetic approach[J]. Transportation Research, Part C:Emerging Technologies, 2005, 13(3):211-234. WU S, YUAN L L, LI L, et al. The short-term traffic flow prediction based on neural network[C]//Future Computer and Communication (ICFCC). Wuhan:[s. n.], 2010:293-294. CHESTER G, DAVE M N. A Methodology for automated trajectory prediction analysis[C]//AIAA Guidance Navigation and Control Conference and Exhibit. Providence Rhode Island:[s. n.], 2004:1-14. LYMPEROPOULOS, LYGEROS J, LECCHINI A. Model based aircraft trajectory prediction during takeoff[C]//AIAA Guidance Navigation and Control Conference and Exhibit. Keystone:[s. n.], 2006:1-12. GILBO E, SMITH S. A new model to improve aggregate air traffic demand predictions[C]//AIAA Guidance, Navigation and Control Conference. Hilton Head:[s. n.], 2007:6450-6466. BANAVAR S,TARUN S, KAPIL S. Aggregate flow Model for air-traffic management[J]. Journal of Guidance, Control, and Dynamics, 2006, 4(29):992-997. BANAVAR S, CHEN N Y, HOK K N. An aggregate sector flow model for air traffic demand forecasting[C]//9th AIAA Aviation Technology, Integration, and Operations Conference.[S. l.]:NASA Ames Research Center, 2009:1-12. MENON P K, SWERIDUK G D, BILIMORIA K D. New approach for modeling, analysis, and control of air traffic flow[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(5):737-744. PETRIS G, PETRONE S, CAMPAGNOLI P. Dynamic linear models with R[M]. New York:Springer-Verlag, 2009:4-47.149-160. WEST M, HARRISON P J. Bayesian forecasting and dynamic models[M]. 2nd Ed. New York:Springer-Verlag, 1997:97-138.
点击查看大图
计量
- 文章访问数: 578
- HTML全文浏览量: 78
- PDF下载量: 265
- 被引次数: 0