• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于贝叶斯估计的短时空域扇区交通流量预测

陈丹 胡明华 张洪海 尹嘉男

陈丹, 胡明华, 张洪海, 尹嘉男. 基于贝叶斯估计的短时空域扇区交通流量预测[J]. 西南交通大学学报, 2016, 29(4): 807-814. doi: 10.3969/j.issn.0258-2724.2016.04.028
引用本文: 陈丹, 胡明华, 张洪海, 尹嘉男. 基于贝叶斯估计的短时空域扇区交通流量预测[J]. 西南交通大学学报, 2016, 29(4): 807-814. doi: 10.3969/j.issn.0258-2724.2016.04.028
CHEN Dan, HU Minghua, ZHANG Honghai, YIN Jianan. Short-Term Traffic Flow Prediction of Airspace Sectors Based on Bayesian Estimation Theory[J]. Journal of Southwest Jiaotong University, 2016, 29(4): 807-814. doi: 10.3969/j.issn.0258-2724.2016.04.028
Citation: CHEN Dan, HU Minghua, ZHANG Honghai, YIN Jianan. Short-Term Traffic Flow Prediction of Airspace Sectors Based on Bayesian Estimation Theory[J]. Journal of Southwest Jiaotong University, 2016, 29(4): 807-814. doi: 10.3969/j.issn.0258-2724.2016.04.028

基于贝叶斯估计的短时空域扇区交通流量预测

doi: 10.3969/j.issn.0258-2724.2016.04.028
基金项目: 

国家自然科学基金资助项目(U1333202)

国家科技重大支撑计划资助项目(2011BAH24B08)

江苏省普通高校研究生科研创新计划资助项目(KYLX_0290)

详细信息
    作者简介:

    陈丹(1988-),女,博士研究生,研究方向为空中交通规划与管理,E-mail:sangyudang@163.com

Short-Term Traffic Flow Prediction of Airspace Sectors Based on Bayesian Estimation Theory

  • 摘要: 为准确把握空域扇区流量分布态势及未来变化趋势,提出了一种基于贝叶斯估计的短时空域扇区交通流量预测方法.首先,通过解析空域系统内航空器原始雷达数据,提取各扇区历史运行信息,建立了多扇区聚合交通流模型;其次,采用贝叶斯估计理论对模型参数进行最优估计和动态更新,预测了空域扇区交通流量的未来演变趋势及其不确定范围;最后,选取国内5个典型繁忙扇区为例,以5 min为时间段,以未来1 h为预测范围,对所提预测方法进行了验证.研究结果表明:85%以上时段交通流量预测结果的绝对误差在3架以内,平均绝对误差均在2架次以内,预测结果的稳定性较好,可充分反映各空域扇区之间短时交通流的动态性和不确定性,符合空中交通的实际情况.

     

  • CASTRO N M, JEONG Y S, JEONG M K. Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions[J]. Expert Systems with Applications, 2009, 36(3):6164-6173.
    MAI T, GHOSH B, WILSON S. Multivariate short-term traffic flow forecasting using Bayesian vector autoregressive moving average model[C]//Transportation Research Board 91st Annual Meeting. Washington D. C.:TRB, 2012:3728-3740.
    樊娜,赵祥模,戴明,等. 短时交通流预测模型[J]. 交通运输工程学报,2012,12(4):114-119.FAN N, ZHAO X M, DAI M. Short-term traffic flow prediction model[J]. Journal of Transportation Engineering, 2012, 12(4):114-119.
    窦慧丽,刘好德,吴志周,等. 基于小波分析和ARIMA模型的交通流预测方法[J]. 同济大学学报:自然科学版,2009,37(4):486-494.DOU H L, LIU H D, WU Z Z, et al. Study of traffic flow prediction based on wavelet analysis and autoregressive integrated moving average model[J]. Journal of Tongji University:Natural Science, 2009, 37(4):486-494.
    高慧,赵建玉,贾磊. 短时交通流预测方法综述[J]. 济南大学学报:自然科学版,2008,22(1):88-94.GAO H, ZHAO J Y, JIA L. Summary of short-time traffic flow forecasting methods[J]. Journal of University of Jinan:Natural Science, 2008, 22(1):88-94.
    崔德光,吴淑宁,徐冰. 空中交通流量预测的人工神经网络和回归组合方法[J]. 清华大学学报:自然科学版,2005,45(1):96-99.CUI Deguang, WU Shuning, XU Bing. Air traffic flow forecasts based on artificial neural networks combined with regression methods[J]. Journal of Tsinghua University:Natural Science, 2005, 45(1):96-99.
    VLAHOGIANNI E I, KARLAFTIS M G, GOLIAS J C. Optimized and meta-optimized neural networks for short-term traffic flow prediction:a genetic approach[J]. Transportation Research, Part C:Emerging Technologies, 2005, 13(3):211-234.
    WU S, YUAN L L, LI L, et al. The short-term traffic flow prediction based on neural network[C]//Future Computer and Communication (ICFCC). Wuhan:[s. n.], 2010:293-294.
    CHESTER G, DAVE M N. A Methodology for automated trajectory prediction analysis[C]//AIAA Guidance Navigation and Control Conference and Exhibit. Providence Rhode Island:[s. n.], 2004:1-14.
    LYMPEROPOULOS, LYGEROS J, LECCHINI A. Model based aircraft trajectory prediction during takeoff[C]//AIAA Guidance Navigation and Control Conference and Exhibit. Keystone:[s. n.], 2006:1-12.
    GILBO E, SMITH S. A new model to improve aggregate air traffic demand predictions[C]//AIAA Guidance, Navigation and Control Conference. Hilton Head:[s. n.], 2007:6450-6466.
    BANAVAR S,TARUN S, KAPIL S. Aggregate flow Model for air-traffic management[J]. Journal of Guidance, Control, and Dynamics, 2006, 4(29):992-997.
    BANAVAR S, CHEN N Y, HOK K N. An aggregate sector flow model for air traffic demand forecasting[C]//9th AIAA Aviation Technology, Integration, and Operations Conference.[S. l.]:NASA Ames Research Center, 2009:1-12.
    MENON P K, SWERIDUK G D, BILIMORIA K D. New approach for modeling, analysis, and control of air traffic flow[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(5):737-744.
    PETRIS G, PETRONE S, CAMPAGNOLI P. Dynamic linear models with R[M]. New York:Springer-Verlag, 2009:4-47.149-160.
    WEST M, HARRISON P J. Bayesian forecasting and dynamic models[M]. 2nd Ed. New York:Springer-Verlag, 1997:97-138.
  • 加载中
计量
  • 文章访问数:  578
  • HTML全文浏览量:  78
  • PDF下载量:  265
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-18
  • 刊出日期:  2016-08-25

目录

    /

    返回文章
    返回