• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

离场航空器四维航迹预测及不确定性分析

张军峰 葛腾腾 陈强 王菲

张军峰, 葛腾腾, 陈强, 王菲. 离场航空器四维航迹预测及不确定性分析[J]. 西南交通大学学报, 2016, 29(4): 800-806. doi: 10.3969/j.issn.0258-2724.2016.04.027
引用本文: 张军峰, 葛腾腾, 陈强, 王菲. 离场航空器四维航迹预测及不确定性分析[J]. 西南交通大学学报, 2016, 29(4): 800-806. doi: 10.3969/j.issn.0258-2724.2016.04.027
ZHANG Junfeng, GE Tengteng, CHEN Qiang, WANG Fei. 4D Trajectory Prediction and Uncertainty Analysis for Departure Aircraft[J]. Journal of Southwest Jiaotong University, 2016, 29(4): 800-806. doi: 10.3969/j.issn.0258-2724.2016.04.027
Citation: ZHANG Junfeng, GE Tengteng, CHEN Qiang, WANG Fei. 4D Trajectory Prediction and Uncertainty Analysis for Departure Aircraft[J]. Journal of Southwest Jiaotong University, 2016, 29(4): 800-806. doi: 10.3969/j.issn.0258-2724.2016.04.027

离场航空器四维航迹预测及不确定性分析

doi: 10.3969/j.issn.0258-2724.2016.04.027
基金项目: 

国家自然科学基金资助项目(71401072)

江苏省自然科学基金资助项目(BK20130814)

中央高校基本科研业务费专项资金资助项目(NS2013064)

详细信息
    作者简介:

    张军峰(1979-),男,副教授,博士,研究方向为空管自动化与智能化,E-mail:zhangjunfeng@nuaa.edu.cn

4D Trajectory Prediction and Uncertainty Analysis for Departure Aircraft

  • 摘要: 为了加速基于轨迹运行概念的实施,提出了基于连续动态模型与离散动态模型的航迹预测方法,并将航空器离场分为起飞与爬升两个阶段,实现离场航空器四维轨迹预测.通过深入分析模型构建、航空器意图、初始状态、性能参数以及环境信息等因素,降低了四维航迹预测的不确定性,提高了预测精度.以国内执飞ZSPD-ZUCK的CQH8867航班为实例进行验证,考虑了起飞质量、爬升顶点信息以及风速风向等对航迹预测的影响,以位置误差与时间误差作为评价指标,研究结果表明:本文提出的算法可以将到达离港点时刻的误差控制在1 min以内,满足空中交通管理的需求.

     

  • KANESHIGE J, BENABIDES J, SHARMA S, et al. Implementation of a trajectory prediction function for trajectory based operations[C]//AIAA AtmosphericFlight Mechanics Conference. Atlanta:AIAA, 2014:1-14.
    SCHUSTER W, OCHIENG W. Performance requirements of future trajectory prediction and conflict detection and resolution tools within SESAR and NextGen[J]. Journal of Air Transport Management. 2014, 35:92-101.
    HANCERLIOGULLARI G, RABADI G, Al-SALEM A H, et al. Greedy algorithms and meta-heuristics for a multiple runway combined arrival-departure aircraft sequencing problem[J]. Journal of Air Transport Management, 2013, 32:39-48.
    ZIGA C A, PIERA M A, RUIZ S. A CD and CR causal model based on path shortening and path stretching techniques[J]. Transportation Research, Part C, 2013, 33:238-256.
    VIVONA R A, CATE K T, GREEN S M. Comparison of aircraft trajectory predictor capabilities and impacts on automation interoperability[C]//AIAA Aviation Technology, Integration, and Operations. Virginia Beach:AIAA, 2011:1-21.
    YEPES J L, HWANG I, ROTEA M. New algorithms for aircraft intent inference and trajectory prediction[J]. Journal of Guidance, Control and Dynamics, 2007, 30(2):370-382.
    HWANG I, SEAH C E. Intent-based probabilistic conflict detection for the next generation air transportation system[J]. Proceedings of the IEEE, 2008, 96(12):2040-2059.
    HWANG I, LIU W Y. Probabilistic trajectory prediction and conflict detection for air traffic control[J]. Journal of Guidance, Control and Dynamics, 2011, 34(6):1779-1789.
    张军峰,隋东,汤新民. 基于状态相关模态切换混合估计的航迹预测[J]. 系统工程理论与实践,2014,34(11):2955-2964.ZHANG Junfeng, SUI Dong, TANG Xinmin. Aircraft trajectory prediction based on SDTHE[J]. System Engineering:Theory and Practice, 2014, 34(11):2955-2964.
    FAA, EUROCONTROL. Common trajectory prediction structure and terminology in support of SESAR and NextGen[R].[S. l.]:FAA, Eurocontrol, 2010.
    BESADA J A, FRONTERA G, CRESPO J, et al. Automated aircraft trajectory prediction based on formal intent-related language processing[J]. IEEE Transactions on Intelligent Transportation System, 2013, 14(3):1067-1082.
    BRONSVOORT J, MCDONALD G, VILAPLANA M, et al. Two-stage approach to integrated air/ground trajectory prediction[J]. Journal of Guidance, Control and Dynamics, 2014, 37(6):2035-2039.
    张军峰,蒋海行,武晓光,等. 基于BADA及航空器意图的四维航迹预测[J]. 西南交通大学学报,2014, 49(3):553-558.ZHANG Junfeng, JIANG Haihang, WU Xiaoguang, et al. 4D Trajectory prediction based on BADA and aircraft intent[J]. Journal of Southwest Jiaotong University, 2014, 49(3):553-558.
    Eurocontrol Experimental Center(ECC). User manual for the base of aircraft data (BADA), revision 3.12, EEC Technical Report No. 12/04[R].[S. l.]:EEC, 2014.
    ALLIGIER R, GIANAZZA D, DURAND N. Learning the aircraft mass and thrust to improve the ground-based trajectory prediction of climbing flights[J]. Transportation Research, Part C, 2013, 36:45-60.
    THIPPHAVONG D P, SCHULTZ C A, LEE A G, et al. Adaptive algorithm to improve trajectory prediction accuracy of climbing aircraft[J]. Journal of Guidance, Control and Dynamics, 2013, 36(1):15-24.
  • 加载中
计量
  • 文章访问数:  661
  • HTML全文浏览量:  84
  • PDF下载量:  262
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-15
  • 刊出日期:  2016-08-25

目录

    /

    返回文章
    返回