Adaptive Optimization of Radio Frequency Identification with Gauss Traversal and Harmony Search Network in Internet of Things
-
摘要: 针对物联网射频识别过程中存在的数据量过大、传统算法计算复杂度较高和识别准确率较低的问题,提出了自适应高斯遍历和声搜索(Gauss traversal and harmony search algorithm, GTHS)物联网射频识别优化算法.首先,基于和声搜索算法进行网络优化设计,针对标准HS在优化精度和计算复杂度等方面存在的问题,利用高斯函数的遍历特性对算法即兴创作过程引入控制参数,提高前后期搜索的针对性,并给出参数选取的理论分析;其次,对物联网射频识别优化模型进行研究,提出改进的自适应优化目标,实现性能指标的均衡优化;最后,将该算法与RPSOAS、CDE以及C-MC算法进行了实验对比分析,结果表明,所提GTHS算法在区域大小为1000 m1000 m、标签数量为100000的大型物联网RFID (radio frequency identification network)实验对象中,收敛精度为7.2156,收敛精度提高29.6%以上.Abstract: To handle the large amount of data and complexity in the radio frequency identification process of the Internet of things, and overcome the disadvantages of lower complexity and recognition accuracy in the traditional algorithms, an algorithm was proposed to achieve the adaptive optimization of radio frequency identification with Gauss traversal and harmony search network in internet of things. First, the harmony search algorithm was used to optimize the design of the network. In order to solve the problems of the low optimizing accuracy and high computational complexity, the ergodicity of Gaussian function was applied to introducing control parameter in the improvisation process of the algorithm, which improves the pertinence for different evolution periods. The theoretical analysis for parameter selection was presented as well. Secondly, the optimization model of the radio frequency identification for the Internet of things was studied, and the improved adaptive optimization objective was proposed to achieve the equilibrium optimization of the performance index. Finally, the proposed algorithm was compared with the RPSOAS, CDE and C-MC algorithm, showing that, in the RFID (radio frequency identification network) experiment with 1000 m1000 m region and the 100000 tags, the convergence rate is 7.215 6, increased by more than 29.6%.
-
Key words:
- internet of things /
- radio frequency identification /
- logistics /
- Gauss traversal /
- harmony search /
- adaptive
-
GIAMPAOLO E D, FORNI F, MARROCCO G. RFID-network planning by particle swarm optimization[C]//Proceedings of the 4th European Conference on Antennas and Propagation. New York:IEEE, 2010:1-5. 刘快,沈艳霞,纪志成. 基于改进粒子群算法的RFID网络系统的优化[C]//2011年中国智能自动化会议论文集. 扬州:[出版者不详],2011:900-904. GONG Y J, SHEN M, ZHANG J, et al. Optimizing RFID network planning by using a particle swarm optimization algorithm with redundant reader elimination[J]. IEEE Transactions on Industrial Informatics, 2012, 8(4):900-912. 刘快,纪志成. 基于混合粒子群的RFID网络的优化部署[J]. 计算机应用研究,2012,29(4):1326-1328.LIU Kuai, JI Zhicheng. RFID network deployment based on hybrid particle swarm optimization[J]. Application Research of Computers, 2012, 29(4):1326-1328. WANG Hui, SUN Hui, LI Changhe, et al. Diversity enhanced particle swarm optimization with neighborhood search[J].Information Sciences, 2013, 223(2):119-135. HRELJA M, KLANCNIK S, IRGOLIc T. Particle swarm optimization approach for modelling a turning process[J]. Advances in Production Engineering Management, 2014, 9(1):21-30. AGRAWAL S, SILAKARI S. Fletcher-reeves based particle swarm optimization for prediction of molecular structure[J]. Journal of Molecular Graphics and Modelling, 2014, 49(2):11-17. GEEM Z W, KIM J H, LOGANATHAN G V. A new geuristic optimization algorithm:harmony search[J]. Simulation, 2001, 76(2):60-68. MORSALI R, JAFARI T, GHODS A, et al. Solving unit commitment problem using a novel version of harmony search algorithm[J]. Frontiers in Energy, 2014, 8(3):297-304. GAO X Z, WANG X, ZENGER K. A memetic-inspired harmony search method in optimal wind generator design[J]. International Journal of Machine Learning and Cybernetics, 2015, 6(1):43-58. ARUL R, RAVI G, VELUSAMI S. An improved harmony search algorithm to solve economic load dispatch problems with generator constraints[J]. Electrical Engineering, 2014, 96(1):55-63. 李军军,黄有方,吴华锋.不确定环境下基于鲁棒粒子群优化的物流射频识别网络优化[J]. 控制理论与应用,2014,31(3):319-326.LI Junjun, HUANG Youfang, WU Huafeng. Optimization of logistics radio frequency identification network based on robust particle swarm optimization under uncertain environment[J]. Control Theory and Application, 2014, 31(3):319-326. 姚峰,杨卫东,张明. 改进自适应变空间差分进化算法[J]. 控制理论与应用,2010,27(1):32-38.YAO Feng, YANG Weidong, ZHANG Ming. Improved adaptive variable space differential evolution algorithm[J]. Control Theory and Applications, 2010, 27(1):32-38. KAELO P, ALI M M. A numerical study of some modified differential evolution algorithms[J]. European Journal of Operational Research, 2005, 169(3):1176-1184.
点击查看大图
计量
- 文章访问数: 532
- HTML全文浏览量: 54
- PDF下载量: 200
- 被引次数: 0