• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

颗粒破碎条件下的胶结砂力学行为

李博 陈宇龙

李博, 陈宇龙. 颗粒破碎条件下的胶结砂力学行为[J]. 西南交通大学学报, 2016, 29(4): 729-735. doi: 10.3969/j.issn.0258-2724.2016.04.018
引用本文: 李博, 陈宇龙. 颗粒破碎条件下的胶结砂力学行为[J]. 西南交通大学学报, 2016, 29(4): 729-735. doi: 10.3969/j.issn.0258-2724.2016.04.018
LI Bo, CHEN Yulong. Mechanical Behavior of Cemented Sand Considering Particle Breakage[J]. Journal of Southwest Jiaotong University, 2016, 29(4): 729-735. doi: 10.3969/j.issn.0258-2724.2016.04.018
Citation: LI Bo, CHEN Yulong. Mechanical Behavior of Cemented Sand Considering Particle Breakage[J]. Journal of Southwest Jiaotong University, 2016, 29(4): 729-735. doi: 10.3969/j.issn.0258-2724.2016.04.018

颗粒破碎条件下的胶结砂力学行为

doi: 10.3969/j.issn.0258-2724.2016.04.018
基金项目: 

国家自然基金资助项目(41430318)

详细信息
    作者简介:

    李博(1982-),男,讲师,研究方向为水文地质与工程地质,E-mail:libo1512@163.com

Mechanical Behavior of Cemented Sand Considering Particle Breakage

  • 摘要: 为揭示胶结量对胶结砂的力学行为与颗粒破碎的影响,引入颗粒破碎的概念,采用颗粒流商业软件PFC对胶结砂力学行为进行了三维颗粒流数值模拟,对不同胶结量的试样进行了一系列的三轴压缩试验,并与实验结果进行对比.在此基础上,分析了数值模拟中胶结试样的微观力学响应.研究结果表明:颗粒流数值模拟能够有效地描述胶结砂的主要力学行为,相比无胶结的试件,胶结砂表现出更高的强度,应力-应变关系曲线呈应变软化型,体积应变为先剪缩后剪胀;胶结砂宏观力学响应(应力-应变关系和剪胀性)与其微观力学响应密切相关,在加载的初期,胶结点破坏率和破坏速率较低,在屈服点后迅速增长,峰值应力点后,胶结点破坏速率和胶结点破坏率趋于平缓;胶结量越小,胶结强度越低,胶结点破坏率和速率越高;胶结量越高,颗粒破碎的比例越高,体积膨胀量越大;胶结量分别为0和100%时,颗粒破碎的比例分别为1.13%和10.96%.胶结作用的存在促进了剪切带的孕育,与无胶结试样相比,胶结试样内部颗粒接触力链更粗、更集中.

     

  • 赵灿. 人工胶结砂力学性能及其本构模型试验研究[D]. 武汉:湖北工业大学,2013.
    SMAIL M A, JOER H A, RANDOLPH M F. Sample preparation technique for artificially cemented soils[J]. Geotechnical Testing Journal, 2000, 23(2):171-177
    CONSOLI N C, FOPPA D, FESUGATO L, et al. Key parameters dictating for strength control of artificially cemented soil[J]. Journal of Geotechnical andGeoenvironmental Engineering, 2007, 133(2):197-205.
    CONSOLI N C, CRUZ R C, FLOSS M F. Variables controlling strength of artificially cemented soil:Influence of curing time[J]. Materials in Civil Engineering, 2011, 136(5):692-696.
    CONSOLI N C, CRUZ R C, FLOSS M F, et al. Parameters controlling tensile and compressive strength of artificially cemented soil[J]. Journal of Geotechnicaland Geoenvironmental Engineering, 2010, 23(5):759-763.
    CONSOLI N C, ROSA A D, CORTE M B, et al. Porosity-cement ratio controlling strength of artificially cemented clays[J]. Materials in Civil Engineering, 2011, 23(8):1249-1254.
    CONSOLI N C, CRUZ R C, HEINECK K S, et al. Fundamental parameters for the stiffness and strength control of artificially cemented sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(9):1347-1353.
    王绪民,赵灿,陈善雄,等. 人工胶结砂物理力学特性试验研究[J]. 岩土力学,2013,34(11):3134-3140.WANG Xumin, ZHAO Can, CHEN Shanxiong, et al. Experimental study of physico-mechanical properties of artificially cemented sand[J]. Rock and Soil Mechanics, 2013, 34(11):3134-3140.
    NOVA R, CASTELLANZA R, TAMAGNINI C. A constitutive model for bonded geomaterials subject to mechanical and/or chemical degradation[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2003, 27(9):705-732.
    刘恩龙,沈珠江. 结构性土强度准则探讨[J]. 工程力学,2007,24(2):50-55.LIU Enlong, SHEN Zhujiang. Investigation on strength criterion for the structured soils[J]. Engineering Mechanics, 2007, 24(2):50-55
    CHENG Y P, BOLTON M D, NAKATA Y. Crushing and plastic deformation of soils simulated using DEM[J]. Gotechnique, 2004, 54(2):131-141.
    蒋明镜,张宁,陈贺,等. 岩石化学风化时效效应的离散元模拟[J]. 岩土力学,2014,35(12):3577-3584.JIANG Mingjing, ZHANG Ning, CHEN He, et al. Discrete element simulation of aging effect of chemical weathering on rock[J]. Rock and Soil Mechanics, 2014, 35(12):3577-3584.
    JIANG M J, JIANG T, CROSTA G B. Modeling failure of jointed rock slope with two main joint sets using a novel DEM bond contact model[J]. Engineering Geology, 2015, 193:79-96.
    WANG Y H, LEUNG S C. Characterization of cemented sand by experimental and numerical investigations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(7):992-1004.
    KUHN M R. A flexible boundary for three-dimensional DEM particle assemblies[J]. Engineering with Computers, 1995, 12:175-183.
    JIANG M J, KONRAD J M, LEROUEIL S. An efficient technique for generating homogeneous specimens for DEM studies[J]. Computers and Geotechnics, 2003, 30(7):579-597.
    WANG Y H, LEUNG S C. A particulate scale investigation of cemented sand behavior[J]. Canadian Geotechnical Journal, 2008, 45(1):29-44
    李建红,张其光,孙逊,等. 胶结和孔隙比对结构性土力学特性的影响[J]. 清华大学学报:自然科学版,2008,48(9):1431-1435.LI Jianhong, ZHANG Qiguang, SUN Xun, et al. Effect of bonding and void ratio on the mechanical behavior of structured soil[J]. Journal of Tsinghua University:Science and Technology, 2008, 48(9):1431-1435.
    刘先珊,董存军.三维颗粒流数值模型的胶结砂岩力学特性[J]. 重庆大学学报,2013,36(2):37-44.LIU Xianshan, DONG Cunjun. Research on mechanical characteristics of the cemented sandstone based on 3Dimensional PFC numerical model[J].Journal of Chongqing University, 2013, 36(2):37-44.
    蒋明镜,张伏光. 考虑胶结厚度影响的结构性砂土三维胶结接触模型[J]. 岩土工程学报,2013,35(增刊2):1-9.JIANG Mingjing, ZHANG Fuguang. DEM simulation of mechanical behaviour and bond breakage of different cemented sands[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(Sup.2):1-9.
    蒋明镜,孙渝刚. 人工胶结砂土力学特性的离散元模拟[J]. 岩土力学,2011,32(6):1849-1856.JIANG Mingjing, SUN Yugang. A DEM modelling of mechanical behaviour of artificially cemented sand[J]. Rock and Soil Mechanics, 2011, 32(6):1849-1856.
    蒋明镜,张伏光,孙渝刚,等. 不同胶结砂土力学特性及胶结破坏的离散元模拟[J]. 岩土工程学报,2012,34(11):1969-1976.JIANG Mingjing, ZHANG Fuguang, SUN Yugang, et al. DEM simulation of mechanical behaviour and bond breakage of different cemented sands[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11):1969-1976.
    BROWN N J, CHEN J F, OOI J Y. A bond model for DEM simulation of cementitious materials and deformable structures[J]. Granular Matter, 2014, 16(3):299-311.
    JIANG M J, SUN Y G, XIAO Y. An experimental investigation on the mechanical behavior between cemented granules[J]. ASTM Geotechnical Testing Journal, 2012, 35(5):678-690.
    JIANG M J, LIU J, SUN Y, et al. Investigation into macroscopic and microscopic behaviors of bonded sands using distinct element method[J]. Soils and Foundations, 2013, 53(6):804-819.
  • 加载中
计量
  • 文章访问数:  542
  • HTML全文浏览量:  56
  • PDF下载量:  264
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-11
  • 刊出日期:  2016-08-25

目录

    /

    返回文章
    返回