Method of Short-Term Wind Speed Forecasting Based on Generalized Autoregressive Conditional Heteroscedasticity Model
-
摘要: 为提高高速列车运行的安全性,基于线性递归的差分自回归移动平均模型(auto-regressive integrated moving average, ARIMA)和非线性递归的广义自回归条件异方差模型(generalized auto-regressive conditionally heteroscedastic, GARCH),提出一种组合模型ARIMA-GARCH进行高速铁路强风风速的短时预测.首先对数据的非平稳性进行预处理,以降低数据非平稳性对所提模型的影响;其次建立线性递归的ARIMA模型对数据进行分析和预测;最后,引入非线性递归的GARCH模型对数据进行分析和预测.基于现场测量的样本仿真分析表明:相比原始数据,ARIMA-GARCH模型的预测精度较高且随着预测步长的增加,平均绝对误差仅从0.836 m/s增加到1.272 m/s;ARIMA-GARCH模型考虑了异方差这一非线性特性,其预测精度明显好于线性的ARIMA模型,其中超前6步预测的平均绝对误差精度提高11.54%.Abstract: In order to improve the security of the train operation, a short-term wind speed forecasting method was proposed based on a linear recursive auto-regressive integrated moving average (ARIMA) algorithm and a non-linear recursive generalized auto-regressive conditionally heteroscedastic (GARCH) algorithm (ARIMA-GARCH). Firstly, the non-stationarity embedded in the original wind speed data was pre-processed to eliminate its effect on the proposed model. Then, a linear recursive ARIMA model was build to predict wind speed. Finally, a non-linear recursive forecasting model was established based on the GARCH algorithm. Numerical example based on wind samples from field measurements The result shows that compared with the source data, the proposed approach has a higher prediction accuracy. With the increasing of prediction step, the mean absolute error only increases from 0.836 m/s to 1.272 m/s. The new method explains parts of the non-linear characteristics (heteroscedasticity) of wind speed time series and improves the prediction accuracy compared with the usual ARIMA approach. For instance, compared with the ARIMA model, the accuracy of mean absolute error of the six-step in advance forecast based on the GARCH model is improved by 11.54%.
-
Key words:
- high-speed trains /
- wind speed forecasting /
- ARIMA /
- non-linear /
- GARCH
-
杨明智,袁先旭,周丹,等. 强横风下青藏线棚车气动性能研究[J]. 铁道科学与工程学报,2008,5(2):75-78.YANG Mingzhi, YUAN Xianxu, ZHOU Dan, et al. Aerodynamics forces acting on a box car running on Qinghai-Tibet railway under strong cross-wind[J]. Journal of Railway Science and Engineering, 2008, 5(2):75-78. 潘迪夫,刘辉,李燕飞,等. 青藏铁路格拉段沿线风速短时预测方法[J]. 中国铁道科学,2008,29(5):129-133.PAN Difu, LIU Hui, LI Yanfei, et al. A short-term forecast method for wind speed along Golmud-Lhasa section of Qinghai-Tibet railway[J]. China Railway Science, 2008, 29(5):129-133. 刘辉,潘迪夫,李燕飞. 基于列车运行安全的青藏铁路大风预测优化模型与算法[J]. 武汉理工大学学报:交通科学与工程版,2008,32(6):986-989.LIU Hui, PAN Difu, LI Yanfei, Qinghai-Tibet railway gale forecasting optimization model and algorithm based on train running safety[J]. Journal of Wuhan University of Technology:Transportation Science and Engineering, 2008, 32(6):986-989. KAMAL L, JAFRI Y Z. Time series models to simulate and forecast hourly averaged wind speed in Quetta, Pakistan[J]. Solar Energy, 1997, 61(1):23-32. LIU Hui, TIAN Hongqi, LI Yanfei. Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction[J]. Applied Energy, 2012, 98:415-424. LIU Hui, TIAN Hongqi, LI Yanfei. An EMD-recursive ARIMA method to predict wind speed for railway strong wind warning system[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 141:27-38. 戚双斌,王维庆,张新燕. 基于支持向量机的风速与风功率预测方法研究[J]. 华东电力,2009,37(9):1600-1603.QI Shuangbin, WANG Weiqing, ZHANG Xinyan. Wind speed and wind power prediction based on SVM[J]. East China Electric Power, 2009, 37(9):1600-1603. 曾杰,张华. 基于最小二乘支持向量机的风速预测模型[J]. 电网技术,2009,33(18):144-147.ZENG Jie, ZHANG Hua, A wind speed forecasting model based on least squares support vector machine[J]. Power System Technology, 2009, 33(18):144-147. BOSSANYI E A. Short-term wind prediction using Kalman filters[J]. Wind Engineering, 1985, 9(1):1-8. KARINIOTAKIS G N, STAVRAKAKIS G S, NOGARET E F. Wind power forecasting using advanced neural networks models[J]. IEEE Transactions on Energy Conversion, 1996, 11(4):762-767. SOMAN S S, ZAREIPOUR H, MALIK O, et al. A review of wind power and wind speed forecasting methods with different time horizons[C]//North American Power Symposium (NAPS 2010).[S.l.]:IEEE, 2010:1-8. 盛峥. 电离层电子总含量不同时间尺度的预报模型研究[J]. 物理学报,2012,61(21):219401-219407.SHENG Zheng. Research on different time-scale prediction models for the total electron content[J]. Acta Physica Sinica, 2012, 61(21):219401-219407. 吴志周,范宇杰,马万经. 基于灰色神经网络的点速度预测模型[J]. 西南交通大学学报,2012,47(2):285-290.WU Zhizhou, FAN Yujie, MA Wanjing. Spot speed prediction model based on grey neural network[J]. Journal of Southwest Jiaotong University, 2012, 47(2):285-290.
点击查看大图
计量
- 文章访问数: 606
- HTML全文浏览量: 97
- PDF下载量: 355
- 被引次数: 0