• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于GARCH的短时风速预测方法

姜言 黄国庆 彭新艳 李永乐

姜言, 黄国庆, 彭新艳, 李永乐. 基于GARCH的短时风速预测方法[J]. 西南交通大学学报, 2016, 29(4): 663-669,742. doi: 10.3969/j.issn.0258-2724.2016.04.009
引用本文: 姜言, 黄国庆, 彭新艳, 李永乐. 基于GARCH的短时风速预测方法[J]. 西南交通大学学报, 2016, 29(4): 663-669,742. doi: 10.3969/j.issn.0258-2724.2016.04.009
JIANG Yan, HUANG Guoqing, PENG Xinyan, LI Yongle. Method of Short-Term Wind Speed Forecasting Based on Generalized Autoregressive Conditional Heteroscedasticity Model[J]. Journal of Southwest Jiaotong University, 2016, 29(4): 663-669,742. doi: 10.3969/j.issn.0258-2724.2016.04.009
Citation: JIANG Yan, HUANG Guoqing, PENG Xinyan, LI Yongle. Method of Short-Term Wind Speed Forecasting Based on Generalized Autoregressive Conditional Heteroscedasticity Model[J]. Journal of Southwest Jiaotong University, 2016, 29(4): 663-669,742. doi: 10.3969/j.issn.0258-2724.2016.04.009

基于GARCH的短时风速预测方法

doi: 10.3969/j.issn.0258-2724.2016.04.009
基金项目: 

青年千人计划项目高铁联合基金资助项目(U1334201)

四川省应用基础研究计划资助项目(2015JY0060)

详细信息
    作者简介:

    姜言(1989-),男,博士研究生,研究方向为桥梁抗风,E-mail:xnjtjiangyan@163.com

    通讯作者:

    黄国庆(1976-),男,教授,博士生导师,研究方向为风工程,E-mail:ghuang1001@gmail.com

Method of Short-Term Wind Speed Forecasting Based on Generalized Autoregressive Conditional Heteroscedasticity Model

  • 摘要: 为提高高速列车运行的安全性,基于线性递归的差分自回归移动平均模型(auto-regressive integrated moving average, ARIMA)和非线性递归的广义自回归条件异方差模型(generalized auto-regressive conditionally heteroscedastic, GARCH),提出一种组合模型ARIMA-GARCH进行高速铁路强风风速的短时预测.首先对数据的非平稳性进行预处理,以降低数据非平稳性对所提模型的影响;其次建立线性递归的ARIMA模型对数据进行分析和预测;最后,引入非线性递归的GARCH模型对数据进行分析和预测.基于现场测量的样本仿真分析表明:相比原始数据,ARIMA-GARCH模型的预测精度较高且随着预测步长的增加,平均绝对误差仅从0.836 m/s增加到1.272 m/s;ARIMA-GARCH模型考虑了异方差这一非线性特性,其预测精度明显好于线性的ARIMA模型,其中超前6步预测的平均绝对误差精度提高11.54%.

     

  • 杨明智,袁先旭,周丹,等. 强横风下青藏线棚车气动性能研究[J]. 铁道科学与工程学报,2008,5(2):75-78.YANG Mingzhi, YUAN Xianxu, ZHOU Dan, et al. Aerodynamics forces acting on a box car running on Qinghai-Tibet railway under strong cross-wind[J]. Journal of Railway Science and Engineering, 2008, 5(2):75-78.
    潘迪夫,刘辉,李燕飞,等. 青藏铁路格拉段沿线风速短时预测方法[J]. 中国铁道科学,2008,29(5):129-133.PAN Difu, LIU Hui, LI Yanfei, et al. A short-term forecast method for wind speed along Golmud-Lhasa section of Qinghai-Tibet railway[J]. China Railway Science, 2008, 29(5):129-133.
    刘辉,潘迪夫,李燕飞. 基于列车运行安全的青藏铁路大风预测优化模型与算法[J]. 武汉理工大学学报:交通科学与工程版,2008,32(6):986-989.LIU Hui, PAN Difu, LI Yanfei, Qinghai-Tibet railway gale forecasting optimization model and algorithm based on train running safety[J]. Journal of Wuhan University of Technology:Transportation Science and Engineering, 2008, 32(6):986-989.
    KAMAL L, JAFRI Y Z. Time series models to simulate and forecast hourly averaged wind speed in Quetta, Pakistan[J]. Solar Energy, 1997, 61(1):23-32.
    LIU Hui, TIAN Hongqi, LI Yanfei. Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction[J]. Applied Energy, 2012, 98:415-424.
    LIU Hui, TIAN Hongqi, LI Yanfei. An EMD-recursive ARIMA method to predict wind speed for railway strong wind warning system[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 141:27-38.
    戚双斌,王维庆,张新燕. 基于支持向量机的风速与风功率预测方法研究[J]. 华东电力,2009,37(9):1600-1603.QI Shuangbin, WANG Weiqing, ZHANG Xinyan. Wind speed and wind power prediction based on SVM[J]. East China Electric Power, 2009, 37(9):1600-1603.
    曾杰,张华. 基于最小二乘支持向量机的风速预测模型[J]. 电网技术,2009,33(18):144-147.ZENG Jie, ZHANG Hua, A wind speed forecasting model based on least squares support vector machine[J]. Power System Technology, 2009, 33(18):144-147.
    BOSSANYI E A. Short-term wind prediction using Kalman filters[J]. Wind Engineering, 1985, 9(1):1-8.
    KARINIOTAKIS G N, STAVRAKAKIS G S, NOGARET E F. Wind power forecasting using advanced neural networks models[J]. IEEE Transactions on Energy Conversion, 1996, 11(4):762-767.
    SOMAN S S, ZAREIPOUR H, MALIK O, et al. A review of wind power and wind speed forecasting methods with different time horizons[C]//North American Power Symposium (NAPS 2010).[S.l.]:IEEE, 2010:1-8.
    盛峥. 电离层电子总含量不同时间尺度的预报模型研究[J]. 物理学报,2012,61(21):219401-219407.SHENG Zheng. Research on different time-scale prediction models for the total electron content[J]. Acta Physica Sinica, 2012, 61(21):219401-219407.
    吴志周,范宇杰,马万经. 基于灰色神经网络的点速度预测模型[J]. 西南交通大学学报,2012,47(2):285-290.WU Zhizhou, FAN Yujie, MA Wanjing. Spot speed prediction model based on grey neural network[J]. Journal of Southwest Jiaotong University, 2012, 47(2):285-290.
  • 加载中
计量
  • 文章访问数:  606
  • HTML全文浏览量:  97
  • PDF下载量:  355
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-24
  • 刊出日期:  2016-08-25

目录

    /

    返回文章
    返回