Dynamic Response Study on Shallow Circular Composite-Lining Tunnels
-
摘要: 为了分析浅埋复合式衬砌隧道动力响应特性,基于Fourier-Besselh级数展开法,给出了半无限空间内平面SV波入射下浅埋圆形复合式衬砌隧道动应力集中系数级数解析解,分析了SV波入射角和入射频率参数对衬砌动应力集中系数的影响,研究表明:在SV波入射下,双层衬砌隧道二次衬砌的动应力集中系数幅值大于初衬值;在隧道外部敷设减震层后,由于减震层剪切刚度较低,隧道动应力特性发生明显改变,当低频入射频率参数为0.25,入射波垂直入射时,设减震层可以降低衬砌动应力集中系数20%;SV波入射角度和入射频率参数对衬砌动应力集中系数有显著影响,随着入射角和入射频率参数增大,衬砌动应力系数幅值和分布越来越复杂.Abstract: To investigate the dynamic response of shallow buried composite-lining tunnels, series solution of the dynamic stress concentration factor of double linings cylindrical cavities in an half elastic space were presented using the Fourier-Besselh method, as cavities were subjected to incident plane SV waves. The influence of the incident angle and frequency parameter on the dynamic stress concentration factor was discussed, then some conclusions were generated. The maximum dynamic stress concentration factor of the second lining is greater than that of the first lining in double linings tunnels. The dynamic stress concentration factor of the tunnel covered with buffer layers outside changes obviously, when the angle of incident SV waves is 0 and the frequency parameter is 0.25, the dynamic stress concentration factor of linings decreases by 20%. The incident angle and frequency parameter of plane SV waves have a significant influence on the dynamic stress concentration factor, with lager incident angle and frequency parameter, the values and distribution of dynamic stress factor become more complex.
-
Key words:
- SV waves /
- circular tunnel /
- double linings /
- buffer layer /
- dynamic stress concentration factor
-
PAO Y H, MAO C C. The diffraction of elastic waves and dynamic stress concentrations[M]. New York:Crane, Russak Company Inc., 1972:306-319. LEE V W, T RIFUNAC M D. Response of tunnels to incident SH waves[J]. Journal of Engineering Mechanics, 1979(105):643-659. DAVIS C A, LEE V W, BARDET J. Transverse response of underground cavities and pipes to incident SV waves[J]. Earthquake Engineering and Structural Dynamics, 2001, 30(3):383-410. LEE V W, KARL J. Diffraction of SV waves by underground, circular, cylindrical cavities[J]. Soil Dynamics and Earthquake Engineering, 1992(11):445-456. 梁建文,纪晓东. 地下衬砌洞室对Rayleigh波的放大作用[J]. 地震工程与工程振动,2006,26(4):24-31.LIANG Jianwen, JI Xiaodong. Amplification of Rayleigh waves due to underground lined cavities[J]. Earthquake Engineering and Engineering Vibration, 2006, 26(4):24-31. 纪晓东,梁建文,杨建江. 地下圆形衬砌洞室在平面P波和SV波入射下动应力集中问题的级数解[J].天津大学学报, 2006, 39(5):511-517.JI Xiaodong, LIANG Jianwen, YANG Jianjiang. On dynamic stress concentration of an underground cylindrical lined cavity subjected to incident plane P and SV waves[J]. Journal of Tianjin University, 2006, 39(5):511-517. 王明年,关宝树. 高烈度地震区地下结构减震原理研究[J]. 工程力学,2000(增刊):295-299. 李刚,钟启凯,尚守平. 平面SH波入射下深埋圆形组合衬砌洞室的动力反应分析[J]. 湖南大学学报:自然科学版,2010,37(1):17-22.LI Gang, ZHONG Qikai, SHANG Shouping. Dynamic Response analysis of deep buried cylindrical composite-lining cavity subjected to incident plane SH waves[J]. Journal of Hunan University:Natural Sciences, 2010, 37(1):17-22. 钟启凯. 地下圆形组合衬砌洞室在地震波下的动力反应分析[D]. 长沙:湖南大学,2009. HASHEMINEJAD S M, MIRI A K. Seismic isolation effect of lined circular tunnels with damping treatments[J]. Earthquake Engineering and Engineering Vibration, 2008, 7(3):305-319. 王帅帅,高波,申玉生,等. 平面SH波入射下深埋软岩隧道抗减震机理研究[J]. 土木工程学报,2014,47(增刊1):280-286.WANG Shuaishuai, GAO Bo, SHEN Yusheng, et al. Study on the mechanism of resistance and damping technology of deep soft rock tunnels subjected to incident plane SH waves[J]. China Civil Engineering Journal, 2014, 47(Sup.1):280-286. 王帅帅,高波,闻毓民,等. 减震层减震原理及跨断层隧道减震技术振动台试验研究[J]. 岩土工程学报,2015,37(6):1086-1092.WANG Shuaishuai, GAO Bo, SUI Chuanyi, et al. Mechanism of shock absorption layer and shaking table tests on shaking absorption technology of tunnel across fault[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6):1086-1092. 王帅帅, 高波. 隧道设置减震层减震机制研究[J]. 岩石力学与工程学报, 2016, 35(3):592-603.WANG Shuaishuai, GAO Bo. Damping mechanism and shaking table test on mountain tunnel linings with buffer layers[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(3):592-603.
点击查看大图
计量
- 文章访问数: 580
- HTML全文浏览量: 75
- PDF下载量: 349
- 被引次数: 0