Recognition of Traffic Congestion Based on Mobile Phone Sensor Data
-
摘要: 准确的交通流状态识别是智能交通管理与控制的基础.通过所开发的手机端软件从手机中提取车辆的加速度与角加速度数据,在研究了其统计特征后,发现该数据可反应周围车辆对目标车辆运行环境的影响,从而与交通流状态的变化有着密切关系.利用支持向量机学习算法,以加速度与角加速度统计参数作为输入变量识别断面交通流状态.实验结果识别精度最高达到92%,表明加速度和角加速度指标可作为交通流状态的表征参数.该研究采用Lasso模型和最小角回归算法对输入参数进行变量选择,在降低计算成本的同时保证了良好的识别效果.Abstract: Accurate recognition of traffic congestion is the basis of intelligent transportation system. This study develops a new method to evaluate the running environment surround the target vehicle based on two parameters:the real-time acceleration and angular acceleration collected from the smart phone. After analyzing the statistical characteristics of the parameters, the data is found to have a close relationship with the corresponding traffic flow states. Support vector machine and parametric optimization method are utilized to test these data. The experiments show a highest accuracy of 92%, indicating that acceleration and angular acceleration could be considered together as the characterization parameters of traffic flow states. To reduce the computation cost while maintaining the accuracy of the traffic state identification, strong explanatory variables of the support vector machine algorithm are recognized by the relative optimal regression model and the least angle regression method.
-
陆化普. 交通规划理论与方法[M]. 北京:清华大学出版社,2006:56-87. 姜桂艳. 道路交通状态判别技术与应用[M]. 北京:人民交通出版社,2004:123-140. GEROLIMINIS N, DAGANZO C F. Existence of urban-scale macroscopic fundamental diagrams:some experimental findings[J]. Institute of Transportation Studies Research Reports Working Papers Proceedings, 2008, 42(9):759770. GEROLIMINIS N. A macroscopic fundamental diagram of urban traffic:recent findings[J]. Transportation Research E-Circular, 2011, E-C149:84. ZHANG Y C, ZUO X Q, ZHANG L T, et al. Traffic congestion detection based on gps floating-car data[J]. Procedia Engineering, 2011, 15:5541-5546. HERRERA J C, WORK D B, HERRING R, et al. Evaluation of traffic data obtained via gps-enabled mobile phones:the mobile century field experiment[J]. Transportation Research Part C Emerging Technologies, 2009, 18(4):568-583. KO J, GUENSLER R, HUNTER M. Analysis of effects of driver/vehicle characteristics on acceleration noise using GPS-equipped vehicles[J]. Transportation Research Part F Traffic Psychology and Behaviour, 2010, 13(1):21-31. 姚智胜. 基于实时数据的道路网短时交通流预测理论与方法研究[D]. 北京:北京交通大学,2007. 孙海波. 高速公路交通流特性分析及其在状态判别中的应用[D]. 南京:东南大学,2013. CHEN X, XIN L, FENG H, et al. Models on real-time state identification for unban traffic based on fixed detector[J]. Applied Mechanics Materials, 2014, 641:818-823. LIU X L, JIA D X, HUI L I, et al. Research on kernel parameter optimization of support vector machine in speaker recognition[J]. Science Technology and Engineering, 2010, 10(7):1669-1673. ROBERT T. Regression shrinkage and selection via the Lasso:a retrospective[J]. Journal of the Royal Statistical Society, 2011, 73(3):273-282. ZOU H. The adaptive lasso and Its oracle properties[J]. Journal of the American Statistical Association, 2006, 101:1418-1429. MEINSHAUSEN N, B HLMANN P. High-dimensional graphs and variable selection with the Lasso[J]. Annals of Statistics, 2006, 34(3):1436-1462. ROBERT T. The Lasso method for variable selection in the cox model[J]. Statistics in Medicine, 1997, 16(4):385-395. WALDMANN P, MSZROS G, GREDLER B, et al. Evaluation of the Lasso and the elastic net in genome-wide association studies[J]. Frontiers in Genetics, 2013, 4:No. 270, 1-11.
点击查看大图
计量
- 文章访问数: 589
- HTML全文浏览量: 58
- PDF下载量: 410
- 被引次数: 0