Research on Stochastic Behavior of Traffic flow
-
摘要: 随着人口和车辆的不断增加,道路发展难以满足车辆交通的需要,交通拥塞等问题日益严重.由于交通流的动态、随机、非线性、多行为主体等特征,进一步增加了交通流问题的复杂性.交通流随机行为的研究对于理解交通流的内在演化规律、管理和控制交通流具有重要作用.目前在该领域的研究已经形成了相应理论体系,建立了系列模型,并不断在实际交通中应用.本文对交通流随机行为相关的研究进行了总结,讨论了随机相互作用无关的模型如微观跟驰模型、宏观流体力学模型、介观气体动理论模型、元胞自动机模型、随机过程模型,随机相互作用相关的模型如势强度相关模型,加权顾前势模型等.通过对目前研究现状的总结和分析,对未来交通流随机影响因素及随机动力学的建模与分析进行了展望.Abstract: With the increase of population and vehicles, the development of roads is difficult to meet the needs of vehicle traffic, traffic congestion and other issues become serious. Due to the dynamic, stochastic, non-linear and multi-behavior subject characteristics of traffic flow, the complexity of traffic flow is increased. Therefore, research on the stochastic behavior of traffic flow is important for understanding the intrinsic evolution rules of traffic systems. At present, a series of models were established in this field, the corresponding theoretical systems were formed, and continuously be applied in traffic. In this paper, the stochastic behavior of traffic flow is reviewed, the main method and development condition of various kinds of theoretical models are discussed. These models mainly include independent interactional models, such as the microscopic following models, the macroscopic fluid dynamics models, the mesoscopic gas dynamic models, the cellular automatic models. Interactional models, such as the interactional potential models and the weighted interactional potential models et al. Based on the summary and analysis of the present research, the future research on stochastic impact factors and the analysis of stochastic dynamics of traffic flow is prospected.
-
Key words:
- traffic flow /
- stochastic behavior /
- modeling /
- interactional potential
-
KITTELSON,ASSOCIATES. Transit capacity and quality of service manual[M]. Washington:Transportation Research Board Press, 2003:7-22. KERNER B S, REHBORN H. Experimental properties of phase transitions in traffic flow[J]. Physical Review Letters, 1997, 79(20):4030. 刘力军. 基于跟驰模型的交通流分岔与混沌研究[D]. 天津:天津大学,2007. 黄海军. 道路交通流与网络交通流的研究现状与发展趋势[R]. 国家杰出青年科学基金实施十周年学术报告会, 北京, 2004:10-19. GAZIS D C, EDIE L C. Traffic flow theory[J]. Proceedings of the IEEE, 1968, 56(4):458-471. GREENSHIELDS B D, CHANNING W, MILLER H. A study of traffic capacity[C]//Highway Research Board Proceedings. National Research Council (USA):Highway Research Board, 1935:320-327. CREMER M, LUDWIG J. A fast simulation model for traffic flow on the basis of Boolean operations[J]. Mathematics and Computers in Simulation, 1986, 28(4):297-303. PIPES L A. An operational analysis of traffic dynamics[J]. Journal of Applied Physics, 1953, 24(3):274-281. 施继忠. 随机车辆纵向跟随系统的稳定性分析与控制[D]. 成都:西南交通大学,2011. 徐晓惠. 基于矢量Lyapunov函数法的复杂系统的稳定性分析[D]. 成都:西南交通大学,2012. 徐荣改, 徐鉴. 时滞全速度差模型的Hopf分岔分析[C]//第十三届全国非线性振动暨第十届全国非线性动力学和运动稳定性学术会议摘要集. 天津:天津大学,2011:56-64. 徐鉴,徐荣改. 时滞车辆跟驰模型及其分岔现象[J].力学进展,2013,43(1):29-38. LIGHTHILL M J, WHITHAM G B. On kinematic waves. A theory of traffic flow on long crowded roads[C]//Proceedings of the Royal Society of London. London:The Royal Society, 1955:317-345. RICHARDS P I. Shock waves on the highway[J]. Operations Research, 1956, 4(1):42-51. PAYNE H J. Models of freeway traffic and control[J]. Mathematical Models of Public Systems, 1971:51-61. HELBING D, JOHANSSON A F. On the controversy around Daganzo's requiem for and Aw-Rascle's resurrection of second-order traffic flow models[J]. The European Physical Journal B, 2009, 69(4):549-562. CHEN X Q, LI L, SHI Q. Stochastic evolutions of dynamic traffic flow:modeling and applications[M]. Berlin:Springer, 2014:1-25. DAGANZO C F. The cell transmission model, part Ⅱ:network traffic[J]. Transportation Research Part B:Methodological, 1995, 29(2):79-93. LEBACQUE J P. The Godunov scheme and what it means for first order traffic flow models[C]//Internaional Symposium on Transportation and Traffic Theory. France:Pergamon Press, 1996:647-677. 李力,姜锐,贾斌,等. 现代交通流理论与应用:高速公路交通流[M]. 北京:清华大学出版社,2011:26-66. SCHADSCHNEIDER A. Traffic flow:a statistical physics point of view[J]. Physica A:Statistical Mechanics and Its Applications, 2002, 313(1):153-187. NELSON P. A kinetic model of vehicular traffic and its associated bimodal equilibrium solutions[J]. Transport Theory and Statistical Physics, 1995, 24(1/3):383-409. NEWELL G F. Comments on traffic dynamics[J]. Transportation Research Part B:Methodological, 1989, 23(5):386-389. AW A, RASCLE M. Resurrection of second order models of traffic flow[J]. SIAM Journal on Applied Mathematics, 2000, 60(3):916-938. SOPASAKIS A. Formal asymptotic models of vehicular traffic. Model closures[J]. SIAM Journal on Applied Mathematics, 2003, 63(5):1561-1584. SWAROOP D, Hedrick J K. String stability of interconnected[C]//American Control Conference, Proceedings of the 1995. Washington:IEEE, 1995, 3:1806-1810. 李兴莉. 交通流的随机因素分析和相变研究[D]. 上海:上海大学,2008. PRIGOGINE I, Herman R. Kinetic theory of vehicular traffic[R]. New York,1971:17-34. HELBING D. Gas-kinetic derivation of Navier-Stokes-like traffic equations[J]. Physical Review E, 1996, 53(3):2366. HOOGENDOORN S P, BOVY P H L. Generic gas-kinetic traffic systems modeling with applications to vehicular traffic flow[J]. Transportation Research Part B:Methodological, 2001, 35(4):317-336. HELBING D. From microscopic to macroscopic traffic models[M]. Berlin:Springer, 1998:122-139. 孟剑平. 交通流的介观与微观模型及其应用[D]. 上海:上海大学,2008. MENG J, QIAN Y, LI X, et al. Lattice Boltzmann model for traffic flow[J]. Physical Review E, 2008, 77(3):036108. MENG J, QIAN Y, DAI S. Modeling of urban traffic networks with lattice Boltzmann model[J]. EPL (Euro Physics Letters), 2008, 81(4):44003. GAZIS D C, KNAPP C H. On-line estimation of traffic densities from time-series of flow and speed data[J]. Transportation Science, 1971, 5(3):283-301. SZETO M W, GAZIS D C. Application of Kalman filtering to the surveillance and control of traffic systems[J]. Transportation Science, 1972, 6(4):419-439. WANG Y, PAPAGEORGIOU M. Real-time freeway traffic state estimation based on extended Kalman filter:a general approach[J]. Transportation Research Part B:Methodological, 2005, 39(2):141-167. WANG Y, PAPAGEORGIOU M, MESSMER A. Real-time freeway traffic state estimation based on extended kalman filter:a case study[J]. Transportation Science, 2007, 41(2):167-181. BOEL R, MIHAYLOVA L. A compositional stochastic model for real time freeway traffic simulation[J]. Transportation Research Part B:Methodological, 2006, 40(4):319-334. SUMALEE A, ZHONG R X, Pan T L, et al. Stochastic cell transmission model (SCTM):a stochastic dynamic traffic model for traffic state surveillance and assignment[J]. Transportation Research Part B:Methodological, 2011, 45(3):507-533. WANG Y, PAPAGEORGIOU M, MESSMER A, et al. An adaptive freeway traffic state estimator[J]. Automatica, 2009, 45(1):10-24. WAGNER P. A time-discrete harmonic oscillator model of human car-following[J]. The European Physical Journal B-Condensed Matter and Complex Systems, 2011, 84(4):713-718. HUANG P H, KONG L J, LIU M R. The study on the one-dimensional random traffic flow model[J]. Acta Physica Sinica, 2001, 50(1):30-36. ZHU H B, GE H X, DAI S Q. A new cellular automaton model for traffic flow with different probability for drivers[J]. International Journal of Modern Physics C, 2007, 18(5):773-782. TREIBER M, KESTING A, HELBING D. Understanding widely scattered traffic flows, the capacity drop, and platoons as effects of variance-driven time gaps[J]. Physical Review E, 2006, 74(1):016123. NGODUY D. Multiclass first-order traffic model using stochastic fundamental diagrams[J]. Transportmetrica, 2011, 7(2):111-125. BRILON W, GEISTEFELDT J, REGLER M. Reliability of freeway traffic flow:a stochastic concept of capacity[C]//Proceedings of the 16th International symposium on Transportation and Traffic Theory, 2005, 125-143. EVANS J L, ELEFTERIADOU L, GAUTAM N. Probability of breakdown at freeway merges using Markov chains[J]. Transportation Research Part B:Methodological, 2001, 35(3):237-254. KERNER B, KLENOV S. Probabilistic breakdown phenomenon at on-ramp bottlenecks in three-phase traffic theory[J]. Journal of the Transportation Research Board, 2006, 1965:70-78. SMILOWITZ K R, DAGANZO C F. Reproducible features of congested highway traffic[J]. Mathematical and Computer Modelling, 2002, 35(5):509-515. BANKS J H. New approach to bottleneck capacity analysis:final report[M]. California:Institute of Transportation Studies, 2006:28-55. DEL Castillo J M. Propagation of perturbations in dense traffic flow:a model and its implications[J]. Transportation Research Part B:Methodological, 2001, 35(4):367-389. JOST D, NAGEL K. Probabilistic traffic flow breakdown in stochastic car-following models[J]. Transportation Research Record:Journal of the Transportation Research Board, 2003, 1852:152-158. KIM T, ZHANG H M. A stochastic wave propagation model[J]. Transportation Research Part B:Methodological, 2008, 42(7):619-634. LU X Y, SKABARDONIS A. Freeway traffic shockwave analysis:exploring the NGSIM trajectory data[C]//86th Annual Meeting of the Transportation Research Board, Washington D.C.:, 2007:1-18. SON B, KIM T, KIM H J, et al. Probabilistic model of traffic breakdown with random propagation of disturbance for ITS application[C]//Knowledge-Based Intelligent Information and Engineering Systems. Berlin:Springer Berlin Heidelberg, 2004:45-51. WANG Hao, WANG Wei, CHEN Xuewu, et al. Experimental Features and Characteristics of Speed Dispersion in Urban Freeway Traffic[J]. Transportation Research Record Journal of the Transportation Research Board, 2007, 1999(1):150-160. BASSAN S, POLUS A, FAGHRI A. Time-dependent analysis of density fluctuations and breakdown thresholds on congested freeways[J]. Transportation Research Record:Journal of the Transportation Research Board, 2006,1965(1):40-47. HABIB M C, POLUS A, COHEN M. Analysis of the breakdown process on congested freeways[J]. Transportation Research Record:Journal of the Transportation Research Board, 2009, 2124:58-66. CHOW A H F, LU X Y, QIU T Z. Empirical analysis of traffic breakdown probability distribution with respect to speed and occupancy[M]. California:Institute of Transportation Studies, 2009:5. LORENZ M, ELEFTERIADOU L. Defining freeway capacity as function of breakdown probability[J]. Transportation Research Record:Journal of the Transportation Research Board, 2001, 1776(1):43-51. KVHNE R, MAHNKE R, Lubashevsky I, et al. Probabilistic description of traffic breakdowns[J]. Physical Review E, 2002, 65(6):066125. CHEN A, ZHOU Z. The -reliable mean-excess traffic equilibrium model with stochastic travel times[J]. Transportation Research Part B:Methodological, 2010, 44(4):493-513. JABARI S E, LIU H X. A stochastic model of traffic flow:Theoretical foundations[J]. Transportation Research Part B:Methodological, 2012, 46(1):156-174. JABARI S E, LIU H X. A stochastic model of traffic flow:Gaussian approximation and estimation[J]. Transportation Research Part B:Methodological, 2013, 47:15-41. MAHNKE R, KAUPUZ?S J. Probabilistic description of traffic flow[J]. Networks and Spatial Economics, 2001, 1(1/2):103-136. MAHNKE R, KAUPU?S J, LUBASHEVSKY I. Probabilistic description of traffic flow[J]. Physics Reports, 2005, 408(1):1-130. KVHNE R, MAHNKE R, LUBASHEVSKY I, et al. Probabilistic description of traffic breakdowns[J]. Physical Review E, 2002, 65(6):066125. MAHNKE R, PIERET N. Stochastic master-equation approach to aggregation in freeway traffic[J]. Physical Review E, 1997, 56(3):2666-2671. KVHNE R, MAHNKE R, LUBASHEVSKY I, et al. Probabilistic description of traffic breakdowns[J]. Physical Review E, 2002, 65(6):066125. VANKAMPEN N G, Stochastic processes in physics and chemistry[M]. North-Holland:Elsevier, 2007:248-254. NAGEL K, SCHRECKENBERG M. A cellular automaton model for freeway traffic[J]. Journal de physique I, 1992, 2(12):2221-2229. BENJAMIN S C, JOHNSON N F, HUI P M. Cellular automata models of traffic flow along a highway containing a junction[J]. Journal of Physics A:Mathematical and General, 1996, 29(12):3119. LI X, WU Q, JIANG R. Cellular automaton model considering the velocity effect of a car on the successive car[J]. Physical Review E, 2001, 64(6):066128. TAKAYASU M, TAKAYASU H. 1/f noise in a traffic model[J]. Fractals, 1993, 1(4):860-866. KNOSPE W, SANTEN L, SCHADSCHNEIDER A, et al. Towards a realistic microscopic description of highway traffic[J]. Journal of Physics A:Mathematical and general, 2000, 33(48):L477. KNOSPE W, SANTEN L, SCHADSCHNEIDER A, et al. Single-vehicle data of highway traffic[R]. 2002. JIANG R, Wu Q S. Cellular automata models for synchronized traffic flow[J]. Journal of Physics A:Mathematical and General, 2003, 36(2):381. BARLOVIC R, SANTEN L, SCHADSCHNEIDER A, et al. Metastable states in cellular automata for traffic flow[J]. The European Physical Journal B-Condensed Matter and Complex Systems, 1998, 5(3):793-800. 贾斌, 高自友, 李克平, 等. 基于元胞自动机的交通系统建模与模拟[M]. 北京, 科学出版社, 2007:70-149. MOU Y B, ZHONG C W. Cellular automaton model of traffic flow based on safety driving[J]. Acta Phys Sinica, 2005, 54(12):5597-5601. DING J X, HUANG H J, TANG T Q. A cellular automaton model of traffic considering the dynamic evolution of velocity randomization probability[J]. Acta Phys Sinica, 2009, 58(11):7591-7595. LI Xingang, KUANG Hua, SONG Tao, et al. New insights into traffic dynamics:a weighted probabilistic cellular automaton model[J]. Chinese Physics B, 2008, 17(7):2366. QIAN Z, BIN J, XING L. A modified weighted probabilistic cellular automaton traffic flow model[J]. Chinese Physics B, 2009, 18(8):3271. LRRAGA M E, ALVAREZ-Icaza L. Cellular automaton model for traffic flow based on safe driving policies and human reactions[J]. Physica A:Statistical Mechanics and its Applications, 2010, 389(23):5425-5438. BENTALEB K, JETTO K, EZ-Zahraouy H, et al. A cellular automata traffic flow modeling of desired speed variability[J]. Chinese Physics B, 2013, 22(1):018902. XIANG Z T, LI X. A weighted mean velocity feedback strategy in intelligent two-route traffic systems[J]. Chinese Physics B, 2013, 22(2):028901. YELDAN , COLORNI A, LU A, et al. A stochastic continuous cellular automata traffic flow model with a multi-agent fuzzy system[J]. Procedia-Social and Behavioral Sciences, 2012, 54:1350-1359. RODARO E, YELDAN . A multi-lane traffic simulation model via continuous cellular automata[J]. arXiv preprint arXiv:2013, 13(04):88. SCHADSCHNEIDER A, CHOWDHURY D, NISHINARI K. Stochastic transport in complex systems:From molecules to vehicles[M]. Oxford:Elsevier, 2010:243-332. SOPASAKIS A, KATSOULAKIS M A. Stochastic modeling and simulation of traffic flow:asymmetric single exclusion process with Arrhenius look-ahead dynamics[J]. SIAM Journal on Applied Mathematics, 2006, 66(3):921-944. SOPASAKIS A. Stochastic noise approach to traffic flow modeling[J]. Physica A:Statistical Mechanics and Its Applications, 2004, 342(3):741-754. KIPNIS C, LANDIM C. Scaling limits of interacting particle systems[M]. Berlin:Springer Science Business Media, 1999:257-346. LIGGETT T. Interacting particle systems[M]. Berlin:Springer Science Business Media, 2005:122-224. VLACHOS D G, KATSOULAKIS M A. Derivation and validation of mesoscopic theories for diffusion of interacting molecules[J]. Physical Review Letters, 2000, 85(18):3898-3901. ALPEROVICH T, SOPASAKIS A. Stochastic description of traffic flow[J]. Journal of Statistical Physics, 2008, 133(6):1083-1105. HAUCK C, SUN Y, TIMOFEYEV I. On cellular automata models of traffic flow with look-ahead potential[J]. Stochastics and Dynamics, 2014, 14(3):1350022. SOPASAKIS A. Traffic updating mechanisms for stochastic lattice-free dynamics[J]. Procedia-Social and Behavioral Sciences, 2013, 80:837-845. ZHENG W F, ZHENG J Y. A cellular automata model of traffic flow with variable probability of randomization[J]. Chinese Physics B, 2015, 24(5):058902. 郑伟范,张继业,王明文,等. 具有加权顾前势的交通流模型[J]. 物理学报,2014,63(22):1-8. 朱位秋. 非线性随机动力学与控制研究进展及展望[J]. 世界科技研究与发展,2005,27(1):1-4. 刘先斌,陈虬,陈大鹏. 非线性随机动力系统的稳定性和分岔研究[J]. 力学进展,1900,26(4):437-452. LIU Xianbin, CHEN Qiu, CHEN Dapeng. The researches on the stability and bifurcation of nonlinear stochastic dynamical systems[J]. Adv Mech, 1900, 26(4):437-452. 胡岗. 非平衡系统的势函数理论[J]. 物理学进展,1994,14(1):1-36. JONES J E. On the determination of molecular fields. Ⅱ. From the equation of state of a gas[C]//Proceedings of the Royal Society of London:Mathematical, Physical and Engineering Sciences. London:The Royal Society, 1924:463-477. ZHANG J W, ZOU Y, GE L. A force model for single-line traffic[J]. Physica A:Statistical Mechanics and Its Applications, 2007, 376:628-640. NI D. Multiscale modeling of traffic flow[J]. Mathematica Aeterna, 2011, 1(1):27-54. NI D. A unified perspective on traffic flow theory, part I:the field theory[J]. Applied Mathematical Sciences, 2013, 7(39):1929-1946. Ni D. A unified perspective on traffic flow theory. part Ⅱ:the unified diagram[J]. Applied Mathematical Sciences, 2013, 7(40):1947-1963. NI D, WANG H. A unified perspective on traffic flow theory. part Ⅲ:validation and benchmarking[J]. Applied Mathematical Sciences, 2013, 7(40):1965-1982.
点击查看大图
计量
- 文章访问数: 553
- HTML全文浏览量: 74
- PDF下载量: 499
- 被引次数: 0