Correlation between Winding Temperature Rise and Oil Flow in Traction Transformer
-
摘要: 为明确牵引负荷下绕组温升与油流速度动态变化的相互跟随性,构建了牵引变压器温升试验平台,模拟各种负荷下绕组和铁心的生热及油流循环过程,并同步测量油温、绕组热点温度以及散热器油流速度.在此基础上,建立了对应的数值计算模型,仿真求解其温度场与油流场.研究结果表明:稳态时油流速度与绕组热点温度基本呈线性关系;阶跃负荷时油流速度有一个冲击回落的过程,油流速度冲击峰值受负荷作用时间和负载系数大小影响,达到峰值时间比绕组热点温度达到峰值迟10 min;连续冲击负荷下,冲击负荷之前的温度与流速只影响绕组热点温度的绝对值,对铜油温差基本无影响.Abstract: To clarify the dynamic relationship between winding temperature rise and flow velocity under traction loads, a special temperature rise test platform for traction transformer was set up. By the test platform the temperature of oil, the winding hot spot as well as oil flow velocity in radiator can be measured at the same time, when the test platform worked under various simulated traction loads. Then a numerical model was established, which was validated by experiment. The results show that flow velocity is proportional to the winding temperature under steady state; oil flow velocity has a shock-down process under step load, the peak of oil flow velocity is affected by load acting time and load factor, the peak time is later 10 minutes than the winding hot spot temperature; under continuous impulsive load, the temperature and velocity before impulsive load affect the absolute value of the hot spot temperature only, while have little effect on the temperature difference between copper and oil.
-
Key words:
- traction load /
- traction transformer /
- winding temperature rise /
- oil flow
-
RAHIMPOUR E, BARATI M, SCHAFER M. An investigation of parameters affecting the temperature rise in windings with zigzag cooling flow path[J]. Applied Thermal Engineering, 2007, 27(11/12):1923-1930. 周利军,吴广宁,王洪亮,等. 变压器油中故障气体的复合预测方法[J]. 西南交通大学学报,2006,41(2):150-153. ZHOU Lijun, WU Guangning, WANG Hongliang, et al. Compound approach of predicting fault gases dissolved in transformer oil[J]. Journal of Southwest Jiaotong University, 2006, 41(2):150-153. 陈伟根,苏小平,周渠,等. 基于顶层油温的变压器绕组热点温度计算改进模型[J]. 重庆大学学报,2012,35(5):69-75. CHEN Weigen, SU Xiaoping, ZHOU Qu, et al. An improved dynamic model of transformer hot spot temperature based on top oil temperature[J]. Jounral of Chongqing University, 2012, 35(5):69-75. ZHOU Lijun, WU Guangning, WANG Hongliang, et al. On-line monitoring technique for multi-component gases dissolved in oil of traction transformer[J]. Transactions on Electrical and Electronic Materials,2006, 7(7):361-364. SWIFT G, MOLINSKI T S, BRAY R, et al. A fundamental approach to transformer thermal modeling. Ⅱ. Field verification[J]. IEEE Trans on Power Delivery, 2001, 16(2):176-180. ZHOU Lijun, WU Guangning. Calculating temperature rise of traction transformer using heat circuit model[J]. Transactions on Electrical and Electronic Materials, 2006, 7(7):355-360. SUSA D, LEHTONEN M. Dynamic thermal modeling of power transformers:further development[J]. IEEE Transaction on Delivery, 2006, 21(4):1961-1980. SUSA D, NORDMAN H. A simple model for calculating transformer hot-spot temperature[J]. IEEE Transaction on Delivery, 2009, 24(3):1257-1265. 韦国,闵英杰,周利军,等. V/X接线牵引变压器的温升特性[J]. 中国铁道科学,2011,32(3):80-85. WEI Guo, MIN Yingjie, ZHOU Lijun, et al. Temperature rise characteristics of V/X wiring traction transformer[J]. China Railway Science, 2011, 32(3):80-85. 周利军,吴广宁,汤浩,等. 计算Scott牵引变压器内部温升的热路模型法[J]. 高电压技术,2007,33(3):136-139. ZHOU Lijun, WU Guangning, TANG Hao, et al. Heat circuit method for calculation temperature rise of Scott traction transformer[J]. High Voltage Engineering, 2007, 33(3):136-139. ZHOU Lijun, WU Guangning, YU Jianfei, et al. Thermal overshoot analysis for hot-spot temperature rise of transformer[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(5):1316-1322. NORDMAN H, RAFSBACL N, SUSA D. Temperature responses to step changes in the load current of power transformers[J]. IEEE Transaction on Delivery, 2003, 18(4):1110-1117. WEINLADER A, WU W, TENBOHLEN S. Prediction of the oil flow distribution in oil-immersed transformer windings by network modelling and computational fluid dynamics[J]. Electric Power Applications, 2012, 6(2):82-89. 刘君,吴广宁,周利军,等. 变压器油纸绝缘频率响应特性影响因素[J]. 西南交通大学学报,2011,46(2):282-286. LIU Jun, WU Guangning, ZHOU Lijun, et al. Factors influencing dielectric frequency responses of oil-paper insulation[J]. Journal of Southwest Jiaotong University, 2011, 46(2):282-286. 王永强,马伦,律方成,等. 基于有限差分和有限体积法相结合的油浸式变压器三维温度场计算[J]. 高电压技术,2014,40(10):3179-3185. WANG Yongqiang, MA Lun, LV Fangcheng. Calculation of 3D temperature field of oil immersed transformer by the combination of the finite element and finite volume method[J]. High Voltage Engineering, 2014, 40(10):3179-3185. 苏小平,陈伟根,胡启元,等. 基于解析-数值技术的变压器绕组温度分布计算[J]. 高电压技术,2014,40(10):3164-3170. SU Xiaoping, CHEN Weigen, HU Qiyuan, et al. Calculation for transformer winding temperature distribution by numerical analytical technology[J]. High Voltage Engineering, 2014, 40(10):3164-3170. LIAO Caibo, RUAN Jiangjun, LIU Chao. 3D coupled electromagnetic-fluid-thermal analysis of oil-immersed triangular wound core transformer[J]. Transactions on Magnetics, 2014, 50(11):1-4. TENG Li, CHEN Weigen, SUN Caixin. An improved dynamic thermal circuit model of oil-immersed power transformer[J]. Power System Technology, 2012, 36(4):236-241.
点击查看大图
计量
- 文章访问数: 594
- HTML全文浏览量: 79
- PDF下载量: 321
- 被引次数: 0