Wireless Power Transfer Technology and Its Research Progress in Rail Transportation
-
摘要: 用新型无线电能传输技术(wireless power transfer, WPT)为轨道交通供电能够降低牵引供电系统维护成本,提高安全性,是未来重点发展的新型牵引供电技术之一.首先阐述了辐射式、电场耦合式及电磁耦合式三种主要WPT技术的特点,并重点介绍了电磁耦合式WPT技术在轨道交通中应用原理.回顾了国内、外轨道交通WPT技术的研究现状,指出大功率高频逆变器、分段供电技术、电磁耦合机构设计、系统优化和控制、谐振频率稳定控制是WPT技术在轨道交通应用中的几大关键技术及关键问题,并对以上关键技术的现有研究成果进行了总结和分析.分析表明,当前对轨道交通WPT技术的研究应集中在研制大功率高频谐振逆变电源、分段供电技术及系统优化方面,对轨道交通WPT技术传输功率及效率的提高、系统稳定性的提升及工程应用可行性具有重要意义.Abstract: Implementation of wireless power transfer (WPT) in traction power supply systems in rail transit could reduce maintenance cost and enhance safety dramatically, and hence is regarded as one of the most promising technologies in future traction power systems. First, technical characteristics of three main WPT technologies, i.e. radiative, capacitive, and inductive WPTs, are introduced with an emphasis on the working principle of the inductive WPT in rail transportation. Then, the current research status of WPT technologies for rail transit in China and abroad are reviewed. High-power high-frequency inverter, segmented power supply, magnetic coupler design, system optimization and control, and resonance stabilization are the key technologies and primary concerns in the progress of wireless power transfer in railway transportation. A detailed review on these technologies are also provided. Current trends of rail transportation-oriented WPT include development of high-power high-frequency resonant inverter, power supply segmentation, and system optimization. Researches in these key technologies will help boost WPT transfer power and efficiency, system stability, and engineering feasibility.
-
Key words:
- wireless power transfer /
- railway transportation /
- magnetic coupling
-
DICKINSON R M. Performance of a high-power, 2.388-GHz receiving array in wireless power transmission over 1.54 km[C]//1976 IEEE-MTT-S International Microwave Symposium. Cherry Hill:IEEE, 1976:139-141. MCSPADDEN J O, MANKINS J C. Space solar power programs and microwave wireless power transmission technology[J]. IEEE Microwave Magazine, 2002, 3(4):46-57. LIU C, HU A P, WANG B, et al. A capacitively coupled contactless matrix charging platform with soft switched transformer control[J]. IEEE Transactions on Industrial Electronics, 2013, 60(1):249-260. 孙雨. 电场耦合无线电能传输系统耦合机构研究[D]. 重庆:重庆大学,2014. THEODORIDIS M P. Effective capacitive power transfer[J]. IEEE Transactions on Power Electronics, 2012, 27(12):4906-4913. CHEON S, KIM Y H, KANG S Y, et al. Circuit-model-based analysis of a wireless energy-transfer system via coupled magnetic resonances[J]. IEEE Transactions on Industrial Electronics, 2011, 58(7):2906-2914. ANDR K, ARISTEIDIS K, ROBERT M, et al. Wireless power transfer via strongly coupled magnetic resonances[J]. Science, 2007, 317(5834):5834. 张献,杨庆新,陈海燕,等. 电磁耦合谐振式传能系统的频率分裂特性研究[J]. 中国电机工程学报,2012,32(9):167-172. ZHANG Xian, YANG Qinxin, CHEN Haiyan, et al. Research on characteristics of frequency splitting in electromagnetic coupling resonant power transmission systems[J]. Proceeding of the CSEE, 2012, 32(9):167-172. JANG J J, CHAE W Y, KIM H S, et al. A study on optimization of the wireless power transfer using the half-bridge flyback converter[C]//2010 Second International Conference on Computer Research and Development.:IEEE, 2010:717-719. 封阿明. 基于全桥谐振变换器的非接触电能传输系统基本特性研究[D]. 南京:南京航空航天大学,2011. ALDHAHER S, LUK P C K, WHIDBORNE J F. Tuning class E inverters applied in inductive links using saturable reactors[J]. IEEE Transactions on Power Electronics, 2014, 29(6):2969-2978. COVIC G, BOYS J T, KISSIN M L G, et al. A three-phase inductive power transfer system for roadway-powered vehicles[J]. IEEE Transactions on Industrial Electronics, 2007, 54(6):3370-3378. BUDHIA M, COVIC G, BOYS J. Magnetic design of a three-phase inductive power transfer system for roadway powered electric vehicles[C]//2010 IEEE Vehicle Power and Propulsion Conference (VPPC).:IEEE, 2010:1-6. KISSIN M L G, BOYS J T, COVIC G. Interphase mutual inductance in polyphase inductive power transfer systems[J]. IEEE Transactions on Industrial Electronics, 2009, 56(7):2393-2400. XIA C Y, ZHANG J, JIA N, et al. Asymmetric magnetic unit of three-phase WPT system for achieving effective power transmission[J]. Electronics Letters, 2013, 49(11):717-719. HAO H, COVIC G, BOYS J T. A parallel topology for inductive power transfer power supplies[J]. IEEE Transactions on Power Electronics, 2014, 29(3):1140-1151. RAHNAMAEE H R, THRIMAWITHANA D J, MADAWALA U K. MOSFET based multi-level converter for WPT systems[C]//2014 IEEE International Conference on Industrial Technology (ICIT).:IEEE, 2014:295-300. RAHNAMAEE H R, MADAWALA U K, THRIMAWITHANA D J. A multi-level converter for high power-high frequency WPT systems[C]//2014 IEEE 5th International Symposium on Power Electronics for Distributed Generation Systems (PEDG).:IEEE, 2014:1-6. 李勇,麦瑞坤,马林森,等. 一种双初级线圈并绕的感应电能传输系统及其功率分配方法[J]. 中国电机工程学报,2015,35(17):4454-4460. Li YONG, MAI Ruikun, MA Linsen, et al. Dual parallel wound primary coils based IPT systems and its power allocation technique[J]. Proceedings of the CSEE, 2015, 35(17):4454-4460. PARK C B, LEE B S, LEE H W. Magnetic and thermal characteristics analysis of inductive power transfer module for railway applications[C]//2012 IEEE Vehicle Power and Propulsion Conference. Seoul:, 2012:576-579. YONG X X, BOYS J T, COVIC G A. Modeling and controller design of ICPT pick-ups[M].:PowerCon, 2002:1602-1606. RICKERS S, NAVARRO I R, BRUCK G H, et al. Receiver coil parameter optimization process for the efficiency of an implantable inductive power transfer system[C]//2014 Middle East Conference on Biomedical Engineering. Doha, Qatar:, 2014:33-38. LEE J Y, SHEN H Y, CHAN K C. Design and implementation of removable and closed-shape dual-ring pickup for contactless Linear inductive power track system[J]. IEEE Transactions on Industry Applications, 2014, 50(6):4036-4046. CHOW J P W, CHEN N, CHUNG H S H. An investigation into the use of rthogonal winding in loosely coupled link for improving power transfer efficiency under coil misalignment[J]. IEEE Transactions on Power Electronics, 2015, 30(10):5632-5649. KAMINENI A, COVIC G A, BOYS J T. Analysis of coplanar intermediate coil structures in inductive power transfer systems[J]. IEEE Transactions on Power Electronics, 2015, 30(11):6141-6154. KIM J H, LEE B S, LEE J H, et al. Development of 1-MW inductive power transfer system for a high-speed train[J]. IEEE Transactions on Industry Applications, 2015, 62(10):6242-6250. ZIERHOFER C M, HOCHMAIR E S. Geometric approach for coupling enhancement of magnetically coupled coils[J]. IEEE Transactions on Biomedical Engineering, 1996, 43(7):708-714. 李砚玲.基于综合的ICPT系统鲁棒控制研究[D]. 重庆:重庆大学,2012. 戴欣,余奎,孙跃. CLC谐振型感应电能传输系统的H控制[J]. 中国电机工程学报,2010,30(30):47-54. DAI Xin, YU Kui, SUN Yue. Study on H control method for CLC resonant Inductive power transfer system[J]. Proceedings of the CSEE, 2010, 30(30):47-54. 戴欣,周继昆,孙跃. 具有频率不确定性的型谐振感应电能传输系统H控制方法[J]. 中国电机工程学报,2011,31(30):45-53. DAI Xin, ZHOU Jikun, SUN Yue. H control method with frequency uncertainty for type resonant inductive power transfer system[J]. Proceedings of the CSEE, 2011, 31(30):45-53. DAI X, ZOU Y, SUN Y. Uncertainty modeling and robust control for LCL resonant inductive power transfer system[J]. Journal of Power Electronics, 2013, 13(5):814-28. LI Y L, SUN Y, DAI X. -Synthesis for frequency uncertainty of the ICPT system[J]. IEEE Transactions on Industrial Electronics, 2013, 60(1):291-300. KIM J, LEE B S, LEE J H, et al. Development of 1 MW inductive power transfer system for a high speed train[J]. IEEE Transactions on Industrial Electronics, 2015, 62(10):6242-6250. ZARGHAM M, GULAK P G. Maximum achievable efficiency in near-field coupled power-transfer systems[J]. IEEE Transactions on Biomedical Circuits and Systems, 2012, 6(3):228-245. RAABE S. Inductive power transfer pickups for high demand applications[D]. Auckland:Auckland University, 2011. 杨民生. 非接触感应耦合电能传输与控制技术及其应用研究[D]. 长沙:湖南大学,2012. BRECHER A, ARTHUR D. Review and evaluation of wireless power transfer (WPT) for electric transit applications[J]. Human Factors the Journal of the Human Factors and Ergonomics Society, 2014, 49(5):832-841. WINTER J, MAYER S, KAIMER S, et al. Inductive power supply for heavy rail vehicles[C]//20133rd International Electric Drives Production Conference (EDPC).:IEEE, 2013:1-9. 武瑛,严陆光,徐善纲. 新型无接触电能传输系统的稳定性分析[J]. 中国电机工程学报,2004,24(5):63-66. WU Ying, YAN Luguang, XU Shangang. Stability analysis of the new contactless power delivery system[J]. Proceedings of the CSEE, 2004, 24(5):63-66. 武瑛. 新型无接触供电系统的研究[D]. 北京:中国科学院电工研究所,2004. 孙跃,夏晨阳,戴欣,等. 感应耦合电能传输系统互感参数的分析与优化[J]. 中国电机工程学报,2010,30(33):44-49. SUN Yue, XIA Chenyang, DAI Xin, et al. Analysis and optimization of mutual inductance for inductively coupled power transfer system[J]. Proceedings of the CSEE, 2010, 30(33):44-49. 孙跃,赵志斌,王智慧,等. 用于感应电能传输系统的新型软开关电路[J]. 电工技术学报,2013,28(8):128-134. SUN Yue, ZHAO Zhibin, WANG Zhihui, et al. A new circuit of soft-switching inductive power transfer system[J]. Transactions of China Electrotechnical Society, 2013, 28(8):128-134. 王智慧,吕潇,孙跃,等. 谐振式无线电能传输系统损耗模型[J]. 电工技术学报,2014,29(9):17-21. WANG Zhihui, L Xiao, SUN Yue, et al. Modeling of power loss in resonant wireless power transfer system[J]. Transactions of China Electrotechnical Society, 2014, 29(9):17-21. 夏晨阳,庄裕海,邵祥,等. 新型多负载变拓扑感应耦合电能传输系统[J]. 中国电机工程学报,2015,35(4):953-960. XIA Chenyang, ZHUANG Yuhai, SHAO Xiang, et al. A novel inductively coupled power transfer system for multi-load with variable topology[J]. Proceedings of CSEE, 2015, 35(4):953-960. TAN Linlin, HUANG Xueliang, LI Hui, et al. Efficiency analysis and optimization on magnetic resonance coupled wireless transfer system[J]. Advanced Materials Research, 2011, 308/309/310:1345-1348. 陈琛,黄学良,谭林林,等. 电动汽车无线充电时的电磁环境和安全评估[J]. 电工技术学报,2015,30(19):61-67. CHEN Chen, HUANG Xueliang, TAN Linlin, et al. Electromagnetic environment and security evaluation for wireless charging of electric vehicles[J]. Transactions of China Electrotechnical Society, 2015, 30(19):61-67. 宋凯,朱春波,李阳,等. 用于电动汽车动态供电的多初级绕组并联无线电能传输技术[J]. 中国电机工程学报,2015,35(17):4445-4453. SONG Kai, ZHU Chunbo, LI Yang, et al. Wireless power transfer technology for electric vehicle dynamic charging using multi-parallel primary coils[J]. Proceedings of the CSEE, 2015, 35(17):4445-4453. 张剑韬,朱春波,陈清泉. 应用于无尾家电的非接触式无线能量传输技术[J]. 电工技术学报,2014,29(9):33-37. ZHANG Jiantao, ZHU Chunbo, CHEN Qingquan. Contactless wireless energy transfer technology applied to tail-free household appliances[J]. Transactions of China Electrotechnical Society, 2014, 29(9):33-37. 宋凯,朱春波,李阳,等. 基于磁耦合谐振的自主无线充电机器人系统设计[J]. 电工技术学报,2014,29(9):38-43. SONG Kai, ZHU Chunbo, LI Yang, et al. Design and implementation of an autonomous wireless robot system using magnetically coupled resonance[J]. Transactions of China Electrotechnical Society, 2014, 29(9):38-43. ZHANG Yiming, ZHAO Zhengming, YUAN Liqiang, et al. Comparison of two basic structures in magnetically-coupled resonant wireless power transfer[J]. Transactions of China Electrotechnical Society, 2013, 28(S2):18-22. 林宁,姚缨英. 恒压输出的无线电能传输系统设计[J]. 电力电子技术,2011(2):86-88. LIN Ning, YAO Yingying. Design of a wireless energy transfer system with constant output[J]. Power Electronics, 2011, 45(2):66-68. 傅文珍,张波,丘东元,等. 自谐振线圈耦合式电能无线传输的最大效率分析与设计[J]. 中国电机工程学报,2009,29(18):21-26. FU Wenzhen, ZHANG Bo, QIU Dongyuan, et al. Maximum efficiency analysis and design of self-resonance coupling coils for wireless power transmission system[J]. Proceedings of the CSEE, 2009, 29(18):21-26. 孙勇,楼佩煌,吴亮亮. 非接触供电系统的应用平台研究[J]. 工业控制计算机,2009,22(3):86-88. SUN Yong, PEI Huang, WU Liangliang. Research on application platform of contactless supply system[J]. Industrial control computer, 2009, 22(3):86-88. HO S L, WANG Junhua, FU W N, et al. A novel resonant inductive magnetic coupling wireless charger with TiO2 compound interlayer[J]. Journal of Applied Physics, 2011, 109(7):07E502-07E502-3. 张献,杨庆新,陈海燕,等. 电磁耦合谐振式无线电能传输系统的建模、设计与实验验证[J]. 中国电机工程学报,2012,32(21):153-158. ZHANG Xian, YANG Qingxin, CHEN Haiyan, et al. Modeling and design and experimental verification of contactless power transmission systems via electromagnetic resonant coupling[J]. Proceedings of the CSEE, 2012, 32(21):153-158. LI Y, MAI R K, YANG M K, et al. Cascaded multi-level inverter based IPT systems for high power applications[J]. Journal of Power Electronics, 2015, 15(6):1508-1516. LI Y, MAI R K, LU L W, et al. Harmonic elimination and power regulation based five-level inverter for supplying IPT systems[C]//2015 IEEE PELS Workshop on Emerging Technologies:Wireless Power (WoW).:IEEE, 2015:1-4. 何正友,李勇,麦瑞坤,等. 考虑阻感性负载IPT系统的动态补偿技术[J]. 西南交通大学学报,2014,49(4):569-575. HE Zhengyou, LI Yong, MAI Ruikun, et al. Dynamic compensation strategy of inductive power transfer system with inductive-resistive load[J]. Journal of Southwest Jiaotong University, 2014, 49(4):569-575. 麦瑞坤,陆立文,李勇,等. 一种采用最小电压与最大电流跟踪的IPT系统动态调谐方法[J]. 电工技术学报,2015,30(19):32-38. MAI Ruikun, LU Liwen, LI Yong, et al. Dynamic resonant compensation approach based on minimum voltage and maximum current tracking for IPT system[J]. Transactions of China Electrotechnical Society, 2015, 30(19):32-38. 黄立敏,李砚玲,麦瑞坤,等. 感应电能传输系统电磁机构带通滤波特性建模分析[J]. 电工技术学报,2015,30(增刊1):138-142. HUANG Limin, LI Yanlin, MAI Ruikun, et al. Band-pass filter modeling and analysis for electromagnetic mechanism in inductive power transfer system[J]. Transactions of China Electrotechnical Society, 2015, 30(Sup.1):138-142. LI Y L, SUN Y, DAI X. Robust control for an uncertain LCL resonant ICPT system using LMI method[J]. Control Engineering Practice, 2013, 21(1):31-41. HUANG L M, LI Y L, HE Z Y, et al. Improved robust controller design for dynamic IPT system under mutual-inductance uncertainty[C]//2015 IEEE PELS Workshop on Emerging Technologies:Wireless Power (WoW).:IEEE, 2015:1-6. STAMATI T E, BAUER P. On-road charging of electric vehicles[C]//2013 IEEE Transportation Electrification Conference and Expo (ITEC).:IEEE, 2013:1-8. WU H H, GILCHRIST A, SEALY K, et al. A review on inductive charging for electric vehicles, 2011[C]//2011 IEEE International Electric Machines and Drives Conference (IEMDC).:IEEE, 2011:143-147. BARNARD J M, FERREIRA J, VAN WYK J D. Sliding transformers for linear contactless power delivery[J]. IEEE Transactions on Industrial Electronics, 1997, 44(6):774-779. 戴欣,孙跃. 单轨行车新型供电方式及相关技术分析[J]. 重庆大学学报:自然科学版,2003,26(1):50-53. DAI Xin, SUN Yue. Novel power supply method and technology analysis for electrified monorail system[J]. Journal of Chongqing University:Natural Science, 2003, 26(1):50-53. BOYS J T, NISHINO S. Primary inductive pathway:U.S. patent 5,619,078[P]. 1997-04-08. ELLIOTT G A J, COVIC G, KACPRZAK D, et al. A new concept:asymmetrical pick-ups for inductively coupled power transfer monorail systems[J]. IEEE Transactions on Magnetics, 2006, 42(10):3389-3391. SONG K, ZHU C, KOH K E, et al. Wireless power transfer for running EV powering using multi-parallel segmented rails[C]//2015 IEEE PELS Workshop on Emerging Technologies:Wireless Power (WoW).:IEEE, 2015:1-6. HUH J, LEE W Y, CHOI S, et al. A new cross-segmented power supply rail for roadway powered electric vehicles[C]//20123rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG).:IEEE, 2012:291-296. CHOI S M, HUH J, LEE W Y, et al. New cross-segmented power supply rails for roadway-powered electric vehicles[J]. IEEE Transactions on Power Electronics, 2013, 28(12):5832-5841. 田勇. 基于分段导轨模式的电动车无线供电技术关键问题研究[D]. 重庆:重庆大学,2012. LEE T S, HUANG S J, TAI C C, et al. Design of wireless power transfer for dynamic power transmission with position-detection mechanism[C]//2015 IEEE International Conference on Industrial Technology (ICIT).:IEEE, 2015:976-981. LEE K, PANTIC Z, LUKIC S M. Reflexive field containment in dynamic inductive power transfer systems[J]. IEEE Transactions on Power Electronics. 2014, 29(9):4592-4602. EAN K K, SONG K, SUKPRASERT P, et al. Two-transmitter wireless power transfer with LCL circuit for continuous power in dynamic charging[C]//2015 IEEE PELS Workshop on Emerging Technologies:Wireless Power (WoW).:IEEE, 2015:1-6. 西南交通大学. 一种机车无线供电系统的分段导轨切换方法:中国, CN201410220383.3[P]. 2014-09-03. 广西电网公司电力科学研究院,重庆大学.基于车辆移动方向检查的电动汽车无线充电控制系统:中国,CN201420047190.8[P].2014-07-09. NAGENDRA G R, BOYS J T, COVIC G, et al. Design of a double coupled IPT EV highway[C]//Industrial Electronics Society, IECON 2013-39th Annual Conference of the IEEE.:IEEE, 2013:4606-4611. DASHORA H K, BERTOLUZZO M, BUJA G. Reflexive properties for different pick-up circuit topologies in a distributed IPT track[C]//2015 IEEE 13th International Conference on Industrial Informatics (INDIN).:IEEE, 2015:69-75. KACPRZAK D, COVIC G A, BOYS J T. An improved magnetic design for inductively coupled power transfer system pickups[C]//Proceedings of the IEEE International Power Engineering Conference. Singapore:, 2005:1136. ELLIOTT G A J, COVIC G A, KACPRZAK D, et al. A new concept:asymmetrical pick-ups for inductively coupled power transfer monorail system[J]. IEEE Transactions on Magnetics, 2006, 42(10):3389-3391. BUDHIA M, BOYS J T, COVIC G, et al. Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems[J]. IEEE Transactions on Industrial Electronics, 2013, 60(1):318-328. ZHANG W, WONG S, TSE C K, et al. Design for efficiency optimization and voltage controllability of series compensated inductive power transfer systems[J]. IEEE Transactions on Power Electronics, 2014, 29(1):191-200. FU M, TANG Z, LIU M, et al. Full-bridge rectifier input reactance compensation in megahertz wireless power transfer systems[C]//2015 IEEE PELS Workshop on Emerging Technologies:Wireless Power (WoW). Daejeon:IEEE, 2015:5. LI H, LI J, WANG K, et al. A maximum efficiency point tracking control scheme for wireless power transfer systems using magnetic resonant coupling[J]. IEEE Transactions on Power Electronics, 2015, 30(7):3998-4008. COLAK K, ASA E, BOJARSKI M, et al. A novel common mode multi-phase half-wave semi-synchronous rectifier for inductive power transfer applications[C]//2015 IEEE Transportation Electrification Conference and Expo (ITEC). Dearborn:IEEE, 2015:1-6. ZHAO C, WANG Z, DU J, et al. Active resonance wireless power transfer system using phase shift control strategy[C]//Annual IEEE Applied Power Electronics Conference and Exposition (APEC) 29th Annual IEEE Applied Power Electronics Conference and Exposition. Fort Worth:IEEE, 2014:1336-1341. FU M, YIN H, ZHU X, et al. Analysis and tracking of optimal load in wireless power transfer systems[J]. IEEE Transactions on Power Electronics, 2015, 30(7):3952-3963. HATA K, IMURA T, HORI Y. Maximum efficiency control of wireless power transfer via magnetic resonant coupling considering dynamics of DC-DC converter for moving electric vehicles[C]//2015 IEEE Applied Power Electronics Conference and Exposition (APEC). Charlotte:IEEE, 2015:3301-3306. NARUSUE Y, KAWAHARA Y, ASAMI T. Maximum efficiency point tracking by input control for a wireless power transfer system with a switching voltage regulator[C]//2015 IEEE Wireless Power Transfer Conference (WPTC). Boulder:IEEE, 2015:4. ZHONG W X, HUI S Y R. Maximum energy efficiency tracking for wireless power transfer systems[J]. IEEE Transactions on Power Electronics, 2015, 30(7):4025-4034. PELLITTERI F, BOSCAINO V, MICELI R, et al. Power tracking with maximum efficiency for wireless charging of E-bikes[C]//2014 IEEE International Electric Vehicle Conference (IEVC). Florence:IEEE, 2014:898-904. KOBAYASHI D, IMURA T, HORI Y. Real-time coupling coefficient estimation and maximum efficiency control on dynamic wireless power transfer for electric vehicles[C]//2015 IEEE PELS Workshop on Emerging Technologies:Wireless Power (WoW). Daejeon, South Korea:IEEE, 2015:6. DIEKHANS T, DE DONCKER R W. A dual-side controlled inductive power transfer system optimized for large coupling factor Variations and partial load[J]. IEEE Transactions on Power Electronics, 2015, 30(11):6320-6328. COLAK K, ASA E, BOJARSKI M, et al. A novel phase-shift control of semibridgeless active rectifier for wireless power transfer[J]. IEEE Transactions on Power Electronics. 2015, 30(11):6288-6297. BERGER A, AGOSTINELLI M, VESTI S, et al. A wireless charging system applying phase-shift and amplitude control to maximize efficiency and extractable power[J]. IEEE Transactions on Power Electronics, 2015, 30(11):6338-6348. 苏玉刚,徐健,谢诗云,等. 电场耦合型无线电能传输系统调谐技术[J]. 电工技术学报,2013(11):189-194. SU Yugang, XU Jian, XIE Shiyun et al. A tuning technology of electrical-field coupled wireless power transfer system[J]. Transactions of China Electrotechnical Society, 2013(11):189-194. SI P, HU A P, BUDGETT D, et al. Stabilizing the operating frequency of a resonant converter for wireless power transfer to implantable biomedical sensors[C]//Proc. 1st Int. Conf. Sensing Technology. Palmerston North, New Zealand:IEEE, 2005:477-482. 徐晔,马皓. 串联补偿电压型非接触电能传输变换器的研究[J]. 电力电子技术,2008,42(3):4-5. XU Ye, MA Hao. Investigation on voltage source series resonant converter with series compensation for CEET[J]. Power Electronics, 2008, 42(3):4-5. 李明豪. 感应耦合电能传输系统调谐控制策略研究[D]. 重庆:重庆大学,2014. HOU J, CHEN Q, WONG S C, et al. Output current characterization of parallel-series/series compensated resonant converter for contactless power transfer[C]//2015 IEEE Applied Power Electronics Conference and Exposition (APEC).:IEEE, 2015:1625-1629. FNATO H, CHIKU Y, HARAKAWA K. Wireless power distribution with capacitive coupling excited by switched mode active negative capacitor[C]//2010 International Conference on Electrical Machines and Systems (ICEMS).:IEEE, 2010:117-122. 强浩,黄学良,谭林林,等. 基于动态调谐实现感应耦合无线电能传输系统的最大功率传输[J]. 中国科学:技术科学,2012,42(7):830-837. QIANG H, HUANG X L, TAN L L, et al. Achieving maximum power transfer of inductively coupled wireless power transfer system based on dynamic tuning control[J]. Sci. China:Tech. Sci., 2012,42(7):830-837.
点击查看大图
计量
- 文章访问数: 926
- HTML全文浏览量: 175
- PDF下载量: 746
- 被引次数: 0