Advances in Anti-Doppler Effect Techniques for High Mobility Wireless Communications
-
摘要: 车辆高速移动所产生的多普勒效应,对于高铁等高移动场景下的宽带无线通信具有极大的危害性,严重影响无线通信系统的可靠性和容量.本文系统地讨论了3类抗多普勒效应应对技术,即多普勒规划、多普勒补偿和多普勒利用,给出了作者在多普勒利用方面的最新研究进展:对于多普勒规划,主要通过系统初始设计在一定程度上降低多普勒效应的危害;对于多普勒补偿,必须准确估计多普勒频偏从而进行补偿或抵消,以大幅减小多普勒效应的影响;对于多普勒利用,应设法运用多普勒效应,化废为宝,挖掘时变信道提供的潜在多普勒分集增益.Abstract: Doppler effect arising during a fast moving vehicle is very harmful to the wireless communications systems in high-speed trains and similar high mobility scenarios, affecting significantly the communication reliability and capacity. In this work, three categories of anti-Doppler effect techniques were analyzed, i.e., Doppler planning, Doppler compensation and Doppler utilization, especially the authors' recent work in Doppler utilization. In Doppler planning, the initial system design should ensure that the Doppler effect is reduced to a certain degree; in Doppler compensation, the Doppler offset should be firstly estimated accurately; then it can be greatly compensated or even canceled; as for Doppler utilization, it aims at collecting the potential Doppler diversity gains inherent in the time-varying channels, thus turning interference into assets.
-
国家发展和改革委员会交通运输司. 综合交通网中长期发展规划[J]. 交通运输系统工程与信息,2008,8(1):17-28. Department of Transportation of National Development and Reform Commisssion. Mid and long term development plan of multi-modal transport network[J]. Journal of Transportation Systems Engineering and Information Technology, 2008, 8(1):17-28. 李赛飞,闫连山,郭伟,等. 高速铁路信号系统网络安全与统一管控[J]. 西南交通大学学报,2015,50(3):478-484. LI Saifei, YAN Lianshan, GUO Wei, et al. Analysis of network security for Chinese high-speed railway signal systems and proposal of unified security control[J]. Journal of Southwest Jiaotong University, 2015, 50(3):478-484. HLAWATSCH F, MATZ G. Wireless communications over rapidly time-varying channels[M]. Oxford:Academic Press, 2011:1-5. 夏云琦. 铁路无线通信技术向LTE-R的演进[J]. 中国铁路,2012(8):75-76. XIA Yunqi. Evolution of wireless communication techniques for railway to LTE-R[J]. Chinese Railway, 2012(8):75-76. WANG Jiangzhou, ZHU Huiling, GOMES N J. Distributed antenna systems for mobile communications in high speed trains[J]. IEEE Journal on Selected Areas in Communications, 2012, 30(4):675-683. FOKUM D T, FROST V S. A survey on methods for broadband internet access on trains[J]. IEEE Communications Surveys Tutorials, 2010, 12(2):171-185. ZHOU Yiqing, ADACHI Fumiyuki, WANG Xiaodong, et al. Guest editorial:broadband wireless communications for high speed vehicles[J]. IEEE Journal on Selected Areas in Communications, 2012, 30(4):673-674. FAN Pingzhi, PANAYIRCI E, POOR H V, et al. Special issue on broadband mobile communications at very high speeds[J]. EURASIP Journal on Wireless Communications and Networking, 2012, 2012(1):1-3. FAN Pingzhi, PANAYIRCI E, LI Ping, et al. Guest editorial:special issue on high mobility wireless communications[J]. Journal of Modern Transportation, 2012, 20(4):197-198 FAN Pingzhi. Editorial:advances in broadband wireless communications under high-mobility scenarios[J]. Chinese Science Bulletin, 2014, 35:4974-4975. GUAN Ke, ZHONG Zhangdui, AI Bo. Assessment of LTE-R using high speed railway channel model[C]//IEEE Communications and Mobile Computing (CMC).:IEEE, 2011:461-464. 曹彦平. TD-LTE技术构建朔黄铁路宽带移动通信系统可行性研究[J]. 铁道通信信号,2014,50(4):68-72. CAO Yanping. Feasibility study of constructing the Shuohuang Railway broadband mobile communication system with TD-LTE[J]. Railway Signalling Communication, 2014, 50(4):68-72. 张敏,李毅,舒培炼. 高速铁路列车车厢穿透损耗应用探析[J]. 移动通信,2011,35(2):21-25. ZHANG Min, LI Yi, SHU Peilian. Research on penetration loss induced by high speed railway carriage[J]. Mobile Communication, 2011, 35(2):21-25. LIU Liu, TAO Cheng, QIU Jiahui, et al. Position-based modeling for wireless channel on high-speed railway under a viaduct at 2.35 GHz[J]. IEEE Journal on Selected Areas in Communications, 2012, 30(4):834-845. 陈霞,姚冬苹. 基于OFDM的铁路移动通信系统及越区切换方法[J]. 铁道通信信号,2008,44(9):30-34. CHEN Xia, YAO Dongping. OFDM based mobile communication system and handover method for railways[J]. Railway Signalling Communicaton, 2008, 44(9):30-34. LIU Ziyue, FAN Pingzhi. An effective handover scheme based on antenna selection in ground train distributed antenna systems[J]. IEEE Transactions on Vehicular Technology, 2014, 63(7):3342-3350. GOLDSMITH A. Wireless communications[M]. Cambridge:Cambridge university press, 2005:84-89. ZHENG Y R, XIAO Chengshan. Improved models for the generation of multiple uncorrelated Rayleigh fading waveforms[J]. IEEE Communications Letters, 2002, 6(6):256-258. ZHAO Yuping, HAGGMAN S G. Intercarrier interference self-cancellation scheme for OFDM mobile communication systems[J]. IEEE Transactions on Communications, 2001, 49(7):1185-1191. CAI Xiaodong, GIANNAKIS G B. Bounding performance and suppressing intercarrier interference in wireless mobile OFDM[J]. IEEE Transactions on Communications, 2003, 51(12):2047-2056. JAKES W C, COX D C. Microwave mobile communications[M]. New York:Wiley-IEEE Press, 1994:13-16. GIANNAKIS G B, TEPEDELENLIOGLU C. Basis expansion models and diversity techniques for blind identification and equalization of time-varying channels[J]. Proceedings of the IEEE, 1998, 86(10):1969-1986. 王文清,张晓宁,余翔. 基于虚拟小区的未来无线组网技术[J]. 移动通信,2014(7):64-68. WANG Wenqing, ZHANG Xiaoning, YU Xiang. Future wireless networking technology based on virtual cell[J]. Mobile Communications, 2014(7):64-68. YAN Li, FANG Xuming, FANG Yuguang. Control and data signaling decoupled architecture for railway wireless networks. IEEE Wireless Communications, 2015, 22(1):103-111. 王锐. 高速铁路无线覆盖方案研究[J]. 技术与市场,2013(3):26-28. WANG Rui. Research on wireless coverage solutions for high-speed railways[J]. Technology and Market, 2013(3):26-28. 王琦. 高速移动环境下的无线网络覆盖方法研究[D]. 广州:华南理工大学,2012. 吴端坡. GSM-R多普勒效应与切换掉话分析及车载分析系统研究[D]. 杭州:浙江大学,2014. 金心宇,吴端坡,吴砥柱. 列车高速运动过程中多普勒频移及误码率分析[J]. 铁道学报,2012,34(4):47-50. JIN Xinyu, WU Duanpo, WU Dizhu. Analysis on the Doppler frequency offset and error rate during the high-speed running of train[J]. Journal of the Railway Society, 2012, 34(4):47-50. 王伟. 2/3G融合组网下高速铁路TD-SCDMA覆盖策略研究[D]. 西安:西安电子科技大学,2011. MORELLI M, KUO C, PUN M. Synchronization techniques for orthogonal frequency division multiple access (OFDMA):a tutorial review[J]. Proceedings of the IEEE, 2007, 95(7):1394-1427. NEHRA K, SHIKH-BAHAEI M. Spectral efficiency of adaptive MQAM/OFDM systems with CFO over fading channels[J]. IEEE Transactions on Vehicular Technology, 2011, 60(3):1240-1247. MERCHED R, YOUSEF N. Efficient Doppler compensation method and receiver for orthogonal frequency division multiplexing (OFDM) systems:US, US7424062 B2[P]. 2008-09-09. YANG Feng, LI K H, THE K C. A carrier frequency offset estimator with minimum output variance for OFDM systems[J]. IEEE Communications Letters, 2004, 8(11):677-679. SHI K. Decision-directed fine synchronization for OFDM systems[J]. IEEE Transaction on Communications, 2005, 53(3):408-412. AL-DWEIK A, HAZMI A, YOUNIS S, et al. Carrier frequency offset estimation for OFDM systems over mobile radio channels[J]. IEEE Transactions on Vehicular Technology, 2010, 59(2):974-979. ROMAN T, KOIVUNEN V. Subspace method for blind CFO estimation for OFDM systems with constant modulus constellations[C]//Proc. IEEE Vehicular Technology Conference (VTC 2005-Spring).:IEEE, 2005, 2:1253-1257. JAN-JAAP V D B, SANDELL M, BORJESSON P O. ML estimation of time and frequency offset in OFDM systems[J]. IEEE Transactions on Signal Processing, 1997, 45(7):1800-1805. ZHU Jie, LEE W. Carrier frequency offset estimation for OFDM systems with null subcarriers[J]. IEEE Transactions on Vehicular Technology, 2006, 55(5):1677-1690. TAO Jun, WU Jingxian, XIAO Chengshan. Estimation of channel transfer function and carrier frequency offset for OFDM systems with phase noise[J]. IEEE Transactions on Vehicular Technology, 2009, 58(8):4380-4387. HSIEH H T, WU W R. Maximum likelihood timing and carrier frequency offset estimation for OFDM systems with periodic preambles[J]. IEEE Transactions on Vehicular Technology, 2009, 58(8):4224-4237. TSAI P Y, KANG H Y, CHIUEH T D. Joint weighted least-squares estimation of carrier-frequency offset and timing offset for OFDM systems over multipath fading channels[J]. IEEE Transactions on Vehicular Technology, 2005, 54(1):211-223. 王向东,吴正海,郭峰.一种信号解调方法及装置:中国,CN103269259A[P]. 2013-08-28. ZHOU Yiqing. Radio environment map based maximum a posteriori Doppler shift estimation for LTE-R[C]//International Workshop on High Mobility Wireless Communications (HMWC). Beijing:IEEE Press, 2014:1-5. 彭翔,朱江. 一种频率自动校正方法与装置:中国,CN1801794A[P]. 2006-07-12. 穆鹏程,殷勤业,郭伟. 一种高速移动环境下OFDM系统的多多普勒频移估计方法:中国,CN102970270A[P]. 2013-03-13. NEVAT I, PETERS G W, DOUCET A, et al. Joint channel and Doppler offset estimation in dynamic cooperative relay networks[J]. IEEE Transactions on Wireless Communications, 2014, 13(12):6570-6579. ZHOU Yiqing, HOU Zhanwei, PAN Zhengang, et al. Dynamic Doppler tracking for LTE-based broadband communications on high speed rails[C]//IEEE China Summit Intern. Conf. Signal and Inf. Process.:IEEE, 2013:389-393. TALBOT S, FARHANG-BOROUJENY B. Time-varying carrier offsets in mobile OFDM[J]. IEEE Transactions on in Communications, 2009, 57(9):2790-2798. HUA J, MENG L, XU X, et al. Novel scheme for joint estimation of SNR, Doppler, and carrier frequency offset in double-selective wireless channels[J]. IEEE Transactions on Vehicular Technology, 2009, 58(3):1204-1217. YANG Lihua, REN Guangliang, QIU Zhiliang. A novel Doppler frequency offset estimation method for DVB-T system in HST environment[J]. IEEE Transactions on Broadcasting, 2012, 58(1):139-143. SAYEED A, AAZHANG B. Joint multipath-Doppler diversity in mobile wireless communications[J]. IEEE Transactions on Communications, 1999, 47(1):123-132. MA Xiaoli, GIANNAKIS G. Maximum-diversity transmissions over time-selective wireless channels[C]//Proceedings of IEEE Wireless Communication Networking Conference.:IEEE, 2002:497-501. MA Xiaoli, GIANNAKIS G. Maximum-diversity transmissions over doubly selective wireless channels[J]. IEEE Transactions on Information Theory, 2003, 49(7):1832-1840. WU Jiangxian. Exploring maximum Doppler diversity by Doppler domain multiplexing[C]//Proceedings of IEEE Global Telecommunication Conference.:IEEE, 2006:1-5. FANG K, LEUS G. Space time block coding for doubly-selective channels[J]. IEEE Transactions on Signal Processing, 2010, 58(3):1934-1940. ZHOU Weixi, FAN Pingzhi, WU Jingxian. A spectral efficient precoder for maximum Doppler diversity transmissions over time selective wireless channels[C]//Proc. Intern. Workshop High Mobility Wireless Commun. Chengdu:IEEE, 2012:113-117. BAISSAS M A R, SAYEED A M. Pilot-based estimation of time-varying multipath channels for coherent CDMA receivers[J]. IEEE Transactions on Signal Processing, 2002, 50(8):2037-2049. ZHOU Weixi, WU Jingxian, FAN Pingzhi. Maximizing Doppler diversity transmissions for high mobility systems with imperfect channel state information[C]//Proc. IEEE Intern. Conf. Commun. Sydney:IEEE, 2014:5920-5925. ZHOU Weixi, WU Jingxian, FAN Pingzhi. On the maximum Doppler diversity of high mobility systems with imperfect channel state information[C]//Proc. IEEE Intern. Conf. Commun. London:IEEE, 2015:4431-4436. ZHOU Weixi, Wu Jingxian, FAN Pingzhi. High mobility wireless communications with Doppler diversity:fundamental performance limits[J]. IEEE Transactions on Wireless Communications, 2015, 14(12):6981-6992. ZHOU Weixi, WU Jingxian, FAN Pingzhi. Spectral efficient Doppler diversity transmissions in high mobility systems with channel estimation errors[C]//Proceeding of IEEE Veh. Technol. Conf. Glasgow:IEEE, 2015:1-6. ZHOU Weixi, WU Jingxian, FAN Pingzhi. Energy and spectral efficient Doppler diversity transmissions in high-mobility systems with imperfect channel estimation[J]. Eurasip Journal on Wireless Communications Networking, 2015, 1(5):140-1-140-12. TANG Z, CANNIZZARO R C, LEUS G, et al. Pilot-assisted time-varying channel estimation for OFDM systems[J]. IEEE Transactions on Signal Processing, 2007, 55(5):2226-2238. QU Fengzhou, YANG Liuqing. On the estimation of doubly-selective fading channels[J]. IEEE Transactions on Wireless Communications, 2010, 9(4):1261-1265. SUN Ning, WU Jingxian. Maximizing spectral efficiency for high mobility systems with imperfect channel state information[J]. IEEE Transactions on Wireless Communications, 2014, 13(3):1462-1470. REN Xiang, CHEN Wen, TAO Meixia. Position-based compressed channel estimation and pilot design for high-mobility OFDM systems[J]. IEEE Transactions on Vehicular Technology, 2015, 64(5):1918-1929.
点击查看大图
计量
- 文章访问数: 931
- HTML全文浏览量: 103
- PDF下载量: 478
- 被引次数: 0