• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

高移动无线通信抗多普勒效应技术研究进展

范平志 周维曦

范平志, 周维曦. 高移动无线通信抗多普勒效应技术研究进展[J]. 西南交通大学学报, 2016, 29(3): 405-417. doi: 10.3969/j.issn.0258-2724.2016.03.001
引用本文: 范平志, 周维曦. 高移动无线通信抗多普勒效应技术研究进展[J]. 西南交通大学学报, 2016, 29(3): 405-417. doi: 10.3969/j.issn.0258-2724.2016.03.001
FAN Pingzhi, ZHOU Weixi. Advances in Anti-Doppler Effect Techniques for High Mobility Wireless Communications[J]. Journal of Southwest Jiaotong University, 2016, 29(3): 405-417. doi: 10.3969/j.issn.0258-2724.2016.03.001
Citation: FAN Pingzhi, ZHOU Weixi. Advances in Anti-Doppler Effect Techniques for High Mobility Wireless Communications[J]. Journal of Southwest Jiaotong University, 2016, 29(3): 405-417. doi: 10.3969/j.issn.0258-2724.2016.03.001

高移动无线通信抗多普勒效应技术研究进展

doi: 10.3969/j.issn.0258-2724.2016.03.001
基金项目: 

国家973计划资助项目(2012CB316100)

国家自然科学基金资助项目(61032002)

国家111工程资助项目(111-2-14)

中央高校基本科研业务费专项资金资助项目(SWJTU12ZT02,2682014ZT11)

详细信息
    作者简介:

    范平志(1955-),博士,1987年起至今任职于西南交通大学,现为信息学院教授,国家级国际联合研究中心(通信与传感网)主任.主要研究方向为高移动宽带无线通信、5G通信关键技术、信息理论与编码、信号设计与处理.主持国家973计划项目(首席科学家)、国家自然科学基金重点项目、国家863计划项目和多项国际科研合作项目.现为英国利兹大学客座教授、国际电气与电子工程师学会会士(IEEE Fellow)、国际工程技术学会会士(IET Fellow)、国家杰出青年科学基金获得者、国家级有突出贡献中青年专家、全国优秀博士论文指导导师. E-mail:pzfan@swjtu.edu.cn;周维曦(1986-),博士研究生,2009年获得西南交通大学通信工程学士学位,并于同年开始直接攻读西南交通大学通信与信息系统博士学位.主要研究方向为高移动宽带无线通信下的多普勒分集、信道估计等重要技术.担任国家973计划项目、国家自然科学基金重点项目等科技项目主研. E-mail:zhouweixister@gmail.com

    范平志(1955-),博士,1987年起至今任职于西南交通大学,现为信息学院教授,国家级国际联合研究中心(通信与传感网)主任.主要研究方向为高移动宽带无线通信、5G通信关键技术、信息理论与编码、信号设计与处理.主持国家973计划项目(首席科学家)、国家自然科学基金重点项目、国家863计划项目和多项国际科研合作项目.现为英国利兹大学客座教授、国际电气与电子工程师学会会士(IEEE Fellow)、国际工程技术学会会士(IET Fellow)、国家杰出青年科学基金获得者、国家级有突出贡献中青年专家、全国优秀博士论文指导导师. E-mail:pzfan@swjtu.edu.cn;周维曦(1986-),博士研究生,2009年获得西南交通大学通信工程学士学位,并于同年开始直接攻读西南交通大学通信与信息系统博士学位.主要研究方向为高移动宽带无线通信下的多普勒分集、信道估计等重要技术.担任国家973计划项目、国家自然科学基金重点项目等科技项目主研. E-mail:zhouweixister@gmail.com

Advances in Anti-Doppler Effect Techniques for High Mobility Wireless Communications

  • 摘要: 车辆高速移动所产生的多普勒效应,对于高铁等高移动场景下的宽带无线通信具有极大的危害性,严重影响无线通信系统的可靠性和容量.本文系统地讨论了3类抗多普勒效应应对技术,即多普勒规划、多普勒补偿和多普勒利用,给出了作者在多普勒利用方面的最新研究进展:对于多普勒规划,主要通过系统初始设计在一定程度上降低多普勒效应的危害;对于多普勒补偿,必须准确估计多普勒频偏从而进行补偿或抵消,以大幅减小多普勒效应的影响;对于多普勒利用,应设法运用多普勒效应,化废为宝,挖掘时变信道提供的潜在多普勒分集增益.

     

  • 国家发展和改革委员会交通运输司. 综合交通网中长期发展规划[J]. 交通运输系统工程与信息,2008,8(1):17-28. Department of Transportation of National Development and Reform Commisssion. Mid and long term development plan of multi-modal transport network[J]. Journal of Transportation Systems Engineering and Information Technology, 2008, 8(1):17-28.
    李赛飞,闫连山,郭伟,等. 高速铁路信号系统网络安全与统一管控[J]. 西南交通大学学报,2015,50(3):478-484. LI Saifei, YAN Lianshan, GUO Wei, et al. Analysis of network security for Chinese high-speed railway signal systems and proposal of unified security control[J]. Journal of Southwest Jiaotong University, 2015, 50(3):478-484.
    HLAWATSCH F, MATZ G. Wireless communications over rapidly time-varying channels[M]. Oxford:Academic Press, 2011:1-5.
    夏云琦. 铁路无线通信技术向LTE-R的演进[J]. 中国铁路,2012(8):75-76. XIA Yunqi. Evolution of wireless communication techniques for railway to LTE-R[J]. Chinese Railway, 2012(8):75-76.
    WANG Jiangzhou, ZHU Huiling, GOMES N J. Distributed antenna systems for mobile communications in high speed trains[J]. IEEE Journal on Selected Areas in Communications, 2012, 30(4):675-683.
    FOKUM D T, FROST V S. A survey on methods for broadband internet access on trains[J]. IEEE Communications Surveys Tutorials, 2010, 12(2):171-185.
    ZHOU Yiqing, ADACHI Fumiyuki, WANG Xiaodong, et al. Guest editorial:broadband wireless communications for high speed vehicles[J]. IEEE Journal on Selected Areas in Communications, 2012, 30(4):673-674.
    FAN Pingzhi, PANAYIRCI E, POOR H V, et al. Special issue on broadband mobile communications at very high speeds[J]. EURASIP Journal on Wireless Communications and Networking, 2012, 2012(1):1-3.
    FAN Pingzhi, PANAYIRCI E, LI Ping, et al. Guest editorial:special issue on high mobility wireless communications[J]. Journal of Modern Transportation, 2012, 20(4):197-198
    FAN Pingzhi. Editorial:advances in broadband wireless communications under high-mobility scenarios[J]. Chinese Science Bulletin, 2014, 35:4974-4975.
    GUAN Ke, ZHONG Zhangdui, AI Bo. Assessment of LTE-R using high speed railway channel model[C]//IEEE Communications and Mobile Computing (CMC).:IEEE, 2011:461-464.
    曹彦平. TD-LTE技术构建朔黄铁路宽带移动通信系统可行性研究[J]. 铁道通信信号,2014,50(4):68-72. CAO Yanping. Feasibility study of constructing the Shuohuang Railway broadband mobile communication system with TD-LTE[J]. Railway Signalling Communication, 2014, 50(4):68-72.
    张敏,李毅,舒培炼. 高速铁路列车车厢穿透损耗应用探析[J]. 移动通信,2011,35(2):21-25. ZHANG Min, LI Yi, SHU Peilian. Research on penetration loss induced by high speed railway carriage[J]. Mobile Communication, 2011, 35(2):21-25.
    LIU Liu, TAO Cheng, QIU Jiahui, et al. Position-based modeling for wireless channel on high-speed railway under a viaduct at 2.35 GHz[J]. IEEE Journal on Selected Areas in Communications, 2012, 30(4):834-845.
    陈霞,姚冬苹. 基于OFDM的铁路移动通信系统及越区切换方法[J]. 铁道通信信号,2008,44(9):30-34. CHEN Xia, YAO Dongping. OFDM based mobile communication system and handover method for railways[J]. Railway Signalling Communicaton, 2008, 44(9):30-34.
    LIU Ziyue, FAN Pingzhi. An effective handover scheme based on antenna selection in ground train distributed antenna systems[J]. IEEE Transactions on Vehicular Technology, 2014, 63(7):3342-3350.
    GOLDSMITH A. Wireless communications[M]. Cambridge:Cambridge university press, 2005:84-89.
    ZHENG Y R, XIAO Chengshan. Improved models for the generation of multiple uncorrelated Rayleigh fading waveforms[J]. IEEE Communications Letters, 2002, 6(6):256-258.
    ZHAO Yuping, HAGGMAN S G. Intercarrier interference self-cancellation scheme for OFDM mobile communication systems[J]. IEEE Transactions on Communications, 2001, 49(7):1185-1191.
    CAI Xiaodong, GIANNAKIS G B. Bounding performance and suppressing intercarrier interference in wireless mobile OFDM[J]. IEEE Transactions on Communications, 2003, 51(12):2047-2056.
    JAKES W C, COX D C. Microwave mobile communications[M]. New York:Wiley-IEEE Press, 1994:13-16.
    GIANNAKIS G B, TEPEDELENLIOGLU C. Basis expansion models and diversity techniques for blind identification and equalization of time-varying channels[J]. Proceedings of the IEEE, 1998, 86(10):1969-1986.
    王文清,张晓宁,余翔. 基于虚拟小区的未来无线组网技术[J]. 移动通信,2014(7):64-68. WANG Wenqing, ZHANG Xiaoning, YU Xiang. Future wireless networking technology based on virtual cell[J]. Mobile Communications, 2014(7):64-68.
    YAN Li, FANG Xuming, FANG Yuguang. Control and data signaling decoupled architecture for railway wireless networks. IEEE Wireless Communications, 2015, 22(1):103-111.
    王锐. 高速铁路无线覆盖方案研究[J]. 技术与市场,2013(3):26-28. WANG Rui. Research on wireless coverage solutions for high-speed railways[J]. Technology and Market, 2013(3):26-28.
    王琦. 高速移动环境下的无线网络覆盖方法研究[D]. 广州:华南理工大学,2012.
    吴端坡. GSM-R多普勒效应与切换掉话分析及车载分析系统研究[D]. 杭州:浙江大学,2014.
    金心宇,吴端坡,吴砥柱. 列车高速运动过程中多普勒频移及误码率分析[J]. 铁道学报,2012,34(4):47-50. JIN Xinyu, WU Duanpo, WU Dizhu. Analysis on the Doppler frequency offset and error rate during the high-speed running of train[J]. Journal of the Railway Society, 2012, 34(4):47-50.
    王伟. 2/3G融合组网下高速铁路TD-SCDMA覆盖策略研究[D]. 西安:西安电子科技大学,2011.
    MORELLI M, KUO C, PUN M. Synchronization techniques for orthogonal frequency division multiple access (OFDMA):a tutorial review[J]. Proceedings of the IEEE, 2007, 95(7):1394-1427.
    NEHRA K, SHIKH-BAHAEI M. Spectral efficiency of adaptive MQAM/OFDM systems with CFO over fading channels[J]. IEEE Transactions on Vehicular Technology, 2011, 60(3):1240-1247.
    MERCHED R, YOUSEF N. Efficient Doppler compensation method and receiver for orthogonal frequency division multiplexing (OFDM) systems:US, US7424062 B2[P]. 2008-09-09.
    YANG Feng, LI K H, THE K C. A carrier frequency offset estimator with minimum output variance for OFDM systems[J]. IEEE Communications Letters, 2004, 8(11):677-679.
    SHI K. Decision-directed fine synchronization for OFDM systems[J]. IEEE Transaction on Communications, 2005, 53(3):408-412.
    AL-DWEIK A, HAZMI A, YOUNIS S, et al. Carrier frequency offset estimation for OFDM systems over mobile radio channels[J]. IEEE Transactions on Vehicular Technology, 2010, 59(2):974-979.
    ROMAN T, KOIVUNEN V. Subspace method for blind CFO estimation for OFDM systems with constant modulus constellations[C]//Proc. IEEE Vehicular Technology Conference (VTC 2005-Spring).:IEEE, 2005, 2:1253-1257.
    JAN-JAAP V D B, SANDELL M, BORJESSON P O. ML estimation of time and frequency offset in OFDM systems[J]. IEEE Transactions on Signal Processing, 1997, 45(7):1800-1805.
    ZHU Jie, LEE W. Carrier frequency offset estimation for OFDM systems with null subcarriers[J]. IEEE Transactions on Vehicular Technology, 2006, 55(5):1677-1690.
    TAO Jun, WU Jingxian, XIAO Chengshan. Estimation of channel transfer function and carrier frequency offset for OFDM systems with phase noise[J]. IEEE Transactions on Vehicular Technology, 2009, 58(8):4380-4387.
    HSIEH H T, WU W R. Maximum likelihood timing and carrier frequency offset estimation for OFDM systems with periodic preambles[J]. IEEE Transactions on Vehicular Technology, 2009, 58(8):4224-4237.
    TSAI P Y, KANG H Y, CHIUEH T D. Joint weighted least-squares estimation of carrier-frequency offset and timing offset for OFDM systems over multipath fading channels[J]. IEEE Transactions on Vehicular Technology, 2005, 54(1):211-223.
    王向东,吴正海,郭峰.一种信号解调方法及装置:中国,CN103269259A[P]. 2013-08-28.
    ZHOU Yiqing. Radio environment map based maximum a posteriori Doppler shift estimation for LTE-R[C]//International Workshop on High Mobility Wireless Communications (HMWC). Beijing:IEEE Press, 2014:1-5.
    彭翔,朱江. 一种频率自动校正方法与装置:中国,CN1801794A[P]. 2006-07-12.
    穆鹏程,殷勤业,郭伟. 一种高速移动环境下OFDM系统的多多普勒频移估计方法:中国,CN102970270A[P]. 2013-03-13.
    NEVAT I, PETERS G W, DOUCET A, et al. Joint channel and Doppler offset estimation in dynamic cooperative relay networks[J]. IEEE Transactions on Wireless Communications, 2014, 13(12):6570-6579.
    ZHOU Yiqing, HOU Zhanwei, PAN Zhengang, et al. Dynamic Doppler tracking for LTE-based broadband communications on high speed rails[C]//IEEE China Summit Intern. Conf. Signal and Inf. Process.:IEEE, 2013:389-393.
    TALBOT S, FARHANG-BOROUJENY B. Time-varying carrier offsets in mobile OFDM[J]. IEEE Transactions on in Communications, 2009, 57(9):2790-2798.
    HUA J, MENG L, XU X, et al. Novel scheme for joint estimation of SNR, Doppler, and carrier frequency offset in double-selective wireless channels[J]. IEEE Transactions on Vehicular Technology, 2009, 58(3):1204-1217.
    YANG Lihua, REN Guangliang, QIU Zhiliang. A novel Doppler frequency offset estimation method for DVB-T system in HST environment[J]. IEEE Transactions on Broadcasting, 2012, 58(1):139-143.
    SAYEED A, AAZHANG B. Joint multipath-Doppler diversity in mobile wireless communications[J]. IEEE Transactions on Communications, 1999, 47(1):123-132.
    MA Xiaoli, GIANNAKIS G. Maximum-diversity transmissions over time-selective wireless channels[C]//Proceedings of IEEE Wireless Communication Networking Conference.:IEEE, 2002:497-501.
    MA Xiaoli, GIANNAKIS G. Maximum-diversity transmissions over doubly selective wireless channels[J]. IEEE Transactions on Information Theory, 2003, 49(7):1832-1840.
    WU Jiangxian. Exploring maximum Doppler diversity by Doppler domain multiplexing[C]//Proceedings of IEEE Global Telecommunication Conference.:IEEE, 2006:1-5.
    FANG K, LEUS G. Space time block coding for doubly-selective channels[J]. IEEE Transactions on Signal Processing, 2010, 58(3):1934-1940.
    ZHOU Weixi, FAN Pingzhi, WU Jingxian. A spectral efficient precoder for maximum Doppler diversity transmissions over time selective wireless channels[C]//Proc. Intern. Workshop High Mobility Wireless Commun. Chengdu:IEEE, 2012:113-117.
    BAISSAS M A R, SAYEED A M. Pilot-based estimation of time-varying multipath channels for coherent CDMA receivers[J]. IEEE Transactions on Signal Processing, 2002, 50(8):2037-2049.
    ZHOU Weixi, WU Jingxian, FAN Pingzhi. Maximizing Doppler diversity transmissions for high mobility systems with imperfect channel state information[C]//Proc. IEEE Intern. Conf. Commun. Sydney:IEEE, 2014:5920-5925.
    ZHOU Weixi, WU Jingxian, FAN Pingzhi. On the maximum Doppler diversity of high mobility systems with imperfect channel state information[C]//Proc. IEEE Intern. Conf. Commun. London:IEEE, 2015:4431-4436.
    ZHOU Weixi, Wu Jingxian, FAN Pingzhi. High mobility wireless communications with Doppler diversity:fundamental performance limits[J]. IEEE Transactions on Wireless Communications, 2015, 14(12):6981-6992.
    ZHOU Weixi, WU Jingxian, FAN Pingzhi. Spectral efficient Doppler diversity transmissions in high mobility systems with channel estimation errors[C]//Proceeding of IEEE Veh. Technol. Conf. Glasgow:IEEE, 2015:1-6.
    ZHOU Weixi, WU Jingxian, FAN Pingzhi. Energy and spectral efficient Doppler diversity transmissions in high-mobility systems with imperfect channel estimation[J]. Eurasip Journal on Wireless Communications Networking, 2015, 1(5):140-1-140-12.
    TANG Z, CANNIZZARO R C, LEUS G, et al. Pilot-assisted time-varying channel estimation for OFDM systems[J]. IEEE Transactions on Signal Processing, 2007, 55(5):2226-2238.
    QU Fengzhou, YANG Liuqing. On the estimation of doubly-selective fading channels[J]. IEEE Transactions on Wireless Communications, 2010, 9(4):1261-1265.
    SUN Ning, WU Jingxian. Maximizing spectral efficiency for high mobility systems with imperfect channel state information[J]. IEEE Transactions on Wireless Communications, 2014, 13(3):1462-1470.
    REN Xiang, CHEN Wen, TAO Meixia. Position-based compressed channel estimation and pilot design for high-mobility OFDM systems[J]. IEEE Transactions on Vehicular Technology, 2015, 64(5):1918-1929.
  • 加载中
计量
  • 文章访问数:  910
  • HTML全文浏览量:  98
  • PDF下载量:  478
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-06
  • 刊出日期:  2016-04-25

目录

    /

    返回文章
    返回