Theories and Engineering Practices of High-Speed Railway Turnout System: Survey and Review
-
摘要: 为了促进高速道岔行业的发展,系统梳理了各国高速铁路道岔领域(包括部件选型与结构设计理念、高速列车/道岔耦合动力分析理论、不同线下基础道岔无缝化设计方法、合理刚度及均匀化设计方法、长大轨件转换计算理论、关键联结部件动静力强度分析、动力学性能测试技术、道岔侧股平面线型与结构设计、制造与铺设、维护与管理等)的学术研究现状、存在问题、具体对策及发展趋势.要适应未来轨道交通技术的发展,高速道岔仍面临着严峻的技术挑战,例如,更高速度的下一代高速道岔在复杂环境下的适应性、全寿命周期设计、轮轨匹配与车/岔动态性能优化、新材料和结构的研发与应用、状态实时获取与性能评估、健康管理及故障预测、能效保持等问题,需要深度融合先进材料与制造、智能与自动化、大数据与云计算、精密测控与效能提升等前沿技术,着力提升我国高速铁路道岔技术领域的原始创新能力.通过现状剖析、问题导向,以期为铁道工程学科的学术研究与技术创新提供新的视角和基础资料.Abstract: In order to promote the development of the high-speed railway turnout industry, the academic research situation, problems, concrete countermeasures and development trend in the field of the international high-speed railway turnout were reviewed systematically, including the components selection and structures design idea, the high-speed train/turnout coupling dynamic analysis, the design method of jointless turnout on different track foundation, the reasonable stiffness and homogenization design, the switching analysis of long moveable rails, the dynamic and static strength analysis of key joint components, the dynamic performance test technology, the turnout plane alignment and structure design in diverging lines, turnout manufacturing and laying, turnout maintenance and management, etc. However, in order to adapt to the development of the future rail transit technology, the high-speed railway turnout industry is still facing severe technical challenges. For example, the next generation of the high-speed railway turnout has problems such as the adaptability in the complex environment, the whole life cycle of design, the wheel/rail matching and the optimization of the train-turnout dynamic performance, the RD and application of new materials and structures, the real-time acquisition and assessment of turnout condition parameters, the health management and fault prediction, the maintenance of capacity and effectiveness. In order to solve these problems, some cutting-edge technologies in advanced materials and manufacturing, intelligent and automation, big data and cloud computing, precision measurement and control, efficiency improvement, etc., need to be deeply integrated into the high-speed turnout system to enhance the original innovation ability of China in this field. Through the current situation and problem analysis, this review is expected to provide new perspectives and basic data for the academic research and technological innovation of the railway engineering disciplines.
-
WANG Ping. Design of high-speed railway turnouts:theory and applications[M].:Elsevier, 2015:68-69. ESVELD C. Modern railway track[M]. 2nd Ed. Zaltbommel:MRT-Productions, 2001:338-339. 王平,刘学毅,寇忠厚. 道岔竖向刚度沿线路纵向分布规律的探讨[J]. 西南交通大学学报,1999,34(2):143-147. WANG Ping, LIU Xueyi, KOU Zhonghou. A study on variation of the vertical rigidity of turnout along the longitudinal direction of track[J]. Journal of Southwest Jiaotong University, 1999, 34(2):143-147. 王平. 道岔转辙器部分轮载分布规律的研究[J]. 西南交通大学学报,1999,34(5):550-553. WANG Ping. A study on variation regularity of load on switch of turnout[J]. Journal of Southwest Jiaotong University, 1999, 34(5):550-553. SCHUPP G, WEIDEMANN C, MAUER L. Modelling the contact between wheel and rail within multibody system simulation[J]. Vehicle System Dynamics, 2004, 41(5):349-364. KASSA E, NIELSEN J C O. Dynamic interaction between train and railway turnout:full-scale field test and validation of simulation models[J]. Vehicle System Dynamics, 2008, 46(S1):521-534. ALFI S, BRUNI S. Mathematical modeling of train-turnout interaction[J]. Vehicle System Dynamics, 2009, 47(5):551-574. 陈嵘. 高速铁路车辆-道岔-桥梁耦合振动理论及应用研究[D]. 成都:西南交通大学,2009. 全顺喜. 高速道岔几何不平顺动力分析及其控制方法研究[D]. 成都:西南交通大学,2012. PLETZ M, DAVES W, OSSBERGER H. A wheel passing a crossing nose:dynamic analysis under high axle loads using finite element modeling[J]. Proceedings of the Institution of Mechanical Engineering Part F:Journal of Rail and Rapid Transit, 2012(10):1-9. SEBES M, AYASSE J B, CHOLLET H, et al. Application of a semi-hertzian method to the simulation of vehicles in high-speed switches[J]. Vehicle System Dynamics, 2006, 44(1):341-348. 王平,黄时寿. 可动心轨无缝道岔的非线性计算理论研究[J]. 中国铁道科学,2001,22(1):84-90. WANG Ping, HUANG Shishou. Study on the nonlinear theory of welded turnout with movable-point frog[J]. China Railway Science, 2001, 22(1):84-90. 王平,刘学毅. 无缝道岔受力与变形的影响因素分析[J]. 中国铁道科学,2003(2):58-66. WANG Ping, LIU Xueyi. Analysis of the influences of some parameters on the longitudinal force and rail displacement of CWR turnout[J]. China Railway Science, 2003(2):58-66. 杨荣山. 桥上无缝道岔纵向力计算理论与试验研究[D]. 成都:西南交通大学,2008. 万轶. 桥上无缝道岔模型试验的设计与研究[D]. 成都:西南交通大学,2006. MIURA S, YANAGAWA H. Characteristics of axial force in rail at turnout integrated with continuous welded rail[J]. Quarterly Report of RTRI (Railway Technical Research Institute, Japan). 1989, 30(4):202-206. 卢耀荣. 超长无缝线路上道岔纵向力计算[R]. 北京:中国铁道科学研究院铁道建筑研究所,1995. 范俊杰. 无缝道岔的受力与变形分析[J]. 北方交通大学学报,1993,17(1):107-111. FAN Junjie. Force and deformation analysis to welded turnout[J]. Journal of Beijing Jiaotong University, 1993, 17(1):107-111. 谷爱军,范俊杰,高亮. 60 kg/m钢轨12号固定辙叉无缝道岔铺设的理论计算分析[J]. 北方交通大学学报,1999,23(1):65-68. GU Aijun, FAN Junjie, GAO Liang. Theoretical calculation for the 60 kg/m rail No.12 continuous welded turnout with rigid frog[J]. Journal of Beijing Jiaotong University, 1999, 23(1):65-68. 蔡成标,王其昌. 30号无缝道岔钢轨温度力与位移计算分析[J]. 铁道学报,1999,21(4):51-54. CAI Chengbiao, WANG Qichang. Analysis of rail temperature stress and displacement of welded switch 30[J]. Journal of the China Railway Society, 1999, 21(4):51-54. 陈秀方,李秋义. 高速铁路无缝道岔结构体系分析广义变分原理[J]. 中国铁道科学,2002,23(1):58-62. CHEN Xiufang, LI Qiuyi. Generalized variation methods for analysis of railway welded turnout structures[J]. China Railway Science, 2002, 23(1):58-62. 李秋义,陈秀方. 基于广义变分原理的铁路无缝道岔计算理论[J]. 交通运输工程学报,2003,3(1):21-24. LI Qiuyi, CHEN Xiufang. Calculating theory of railway welded turnout based on generalized variational principle[J]. Journal of Traffic and Transportation Engineering, 2003, 3(1):21-24. ANDERSSON C, DAHLBERG T. Wheel/rail impacts at a railway turnout crossing[J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit, 1998, 212(2):123-134. ZAREMBSKI A M. Reducing wheel/rail forces in turnouts[J]. Railway Track and Structures, 1991(5):8-9. ZHU J. On the effect of varying stiffness under the switch rail on the wheel-rail dynamic characteristics of a high-speed turnout[J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit, 2006, 220(F1):69-75. LOY H. Sleeper pads in turnouts-optimizing the static rail deflection[C]//Proceedings of 14th Nordic Seminar in Railway Technology. Linkping:Linkping University Press, 2006:26-27. NICKLISCH D, KASSA E, NIELSEN J. Geometry and stiffness optimization for switches and crossings and simulation of material degradation[J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit, 2010, 224:279-292. 侯文英. 道岔区刚度及其合理匹配[J]. 铁道标准设计,2007(2):7-11. 陈小平,王平. 无碴道岔轨道刚度分布规律及均匀化[J]. 西南交通大学学报,2006,41(4):447-451. CHEN Xiaoping, WANG Ping. Distribution regularity and homogenization of track rigidity for ballastless turnout[J]. Journal of Southwest Jiaotong University, 2006, 41(4):447-451. 陈小平. 高速道岔轨道刚度理论及应用研究[D]. 成都:西南交通大学,2008. ILIC'?, TOMI?IC'-TORIAKOVIC' M, RADIVOJEVIC' G. Modelling the swing nose frog of turnout[J]. Architecture and Civil Engineering, 1997, 1(4):533-539. MRQVEZ F P G, SCHMIDB F. A digital filter-based approach to the remote condition monitoring of railway turnouts[J]. Reliability Engineering and System Safety, 2007, 92(6), 830-840. FAUSTO P. A digital filter-based approach to the remote condition monitor of railway turnouts[J]. Reliability Engineering and System Safety, 2007, 92:830-840. 王平. 多点牵引时道岔扳动力计算与分析[J]. 铁道标准设计,2002(2):23-25. 蔡小培. 高速道岔尖轨与心轨转换及控制研究[D]. 成都:西南交通大学,2008. 王平. 钢岔枕的力学特性分析及其改进措施[J]. 铁道建筑,2000(1):8-10. 李粮余,黄立红,熊维. 高速道岔护轨垫板设计研究[J]. 四川建筑,2008,28(2):69-71. 贺勇军. 可动心轨道岔-动心轨转换结构优化研究[J]. 现代城市轨道交通,2009(3):75-78. HE Yongjun. Transfer structure optimization of first drawing point in turnout with movable-point frog[J]. Modern Urban Transit, 2009(3):75-78. PALSSON B A. Design optimization of switch rails in railway turnouts[J]. Vehicle System Dynamics, 2013, 51(10):1619-1639. KASSA E, JOHANSSON G. Simulation of train-turnout interaction and plastic deformation of rail profiles[J]. Vehicle System Dynamics, 2006, 44(1):349-359. MA Mingzheng, WANG Ping, XU Jingmang. Influence evaluation of fastener stiffness match on subway rail switch safety[J]. Applied Mechanics and Materials, 2014:256-261. 徐井芒,王平,陈嵘,等. 高速道岔转换锁闭结构力学特性[J]. 西南交通大学学报,2014,48(4):702-707. XU Jingmang, WANG Ping, CHEN Rong, et al. Mechanical properties of high-speed turnout switching and locking device[J]. Journal of Southwest Jiaotong University, 2014, 48(4):702-707. 徐井芒,王平,徐浩,等. 尖轨廓形对地铁道岔使用寿命的影响研究[J]. 铁道学报,2014,36(3):75-79. XU Jingmang, WANG Ping, LIU Hao, et al. Study on impact of switch rail profile on service life of subway switches[J]. Journal of the China Railway Society, 2014, 36(3):75-79. 徐井芒,王平,曾晓辉,等. 地铁道岔轨顶坡对尖轨磨耗的影响[J]. 中南大学学报:科学技术版,2014,45(8):2899-2904. XU Jingmang, WANG Ping, ZENG Xiaohui, et al. Effect of rail top slope on subway switch rail wear[J]. Journal of Central South University:Science and Technology, 2014, 45(8):2899-2904. 田春香,颜华,赵坪锐,等. 无砟轨道道岔区轨下基础受力分析[J]. 铁道工程学报,2006(5):48-51. TIAN Chunxiang, YAN Hua, ZHAO Pingrui, et al. The stress analysis of foundation in ballastless track turnout region[J]. Journal of Railway Engineering Society, 2006(5):48-51. WANG Ping, CHEN Rong, QUAN Shunxi. Development and application of wheel-set lateral displacement test system in high speed railway turnout zone[J]. Przeglad Elektrothchniczny:Electrical Review, 2012, 88(1B):69-73. 何华武. 时速250 km级18号道岔设计理论与试验研究[J]. 铁道学报,2007,29(1):66-73. HE Huawu. Research on the design theories and experiments of the 18#Turnout under 250 km/h[J]. Journal of the China Railway Society, 2014, 36(3):75-79. 王树国, 葛晶, 王猛,等. 高速道岔关键技术试验研究[J]. 铁道学报,2015,37(1):77-81. WANG Shuguo, GE Jing, WANG Meng, et al. Experiment study on key technologies of high-speed turnout[J]. Journal of the China Railway Society, 2015, 37(1):77-81. KASSA E, NIELSEN J C O. Dynamic interaction between train and railway turnout:full-scale field test and validation of simulation models[J]. Vehicle System Dynamics, 2008, 46(S1):521-534. 王平. 高速铁路道岔设计理论与实践[M]. 成都:西南交通大学出版社,2011:112-115. 王平. 高速铁路道岔设计理论与实践[M]. 2版. 成都:西南交通大学出版社,2015:58-60. 曹洋. 道岔平面线型动力分析及其设计方法研究[D]. 西南交通大学,2013. 曹洋,王平,赵卫华. 基于平面参数法的道岔线型设计研究[J]. 铁道建筑,2011(2):101-103. 郭福安. 国外高速铁路的道岔设计[J]. 中国铁路,2006(2):48-50. 王树国,顾培雄. 客运专线道岔技术研究[J]. 中国铁路,2007(8):21-28. 何华武. 中国铁路高速道岔技术研究[J]. 中国工程科学,2009,11(5):23-30. HE Huawu. Technical studies on high-speed turnouts for china railways[J]. Engineering Sciences, 2009, 11(5):23-30. 孙加林,姜卫利. 秦沈客运专线大号码道岔线型的分析[J]. 铁道建筑,2004(5):51-52. 孙加林,宣言,王树国. 铁路大号码道岔合理线型设置的仿真研究[J]. 铁道建筑,2010(8):125-127. 王树国,葛晶,孙家林,等. 高速铁路道岔平面设计参数与侧线线型的研究[J]. 铁道建筑,2014(1):91-94. 刘建新,蔡成标. 客运专线道岔平面设计参数的动力学研究[J]. 铁道建筑,2007(5):86-89. WANG Ping, CHEN Rong, CHEN Xiaoping. Wheel/rail relationship optimization of switch zone in high-speed railway turnout[C]//Proceedings of the 2nd International Conference on Transportation Engineering, ICTE 2009. Reston:American Society of Civil Engineers. 2009:2833-2838. 王树国,葛晶. 客运专线道岔AT钢轨选型的研究[J]. 中国铁道科学,2008,29(3):63-67. WANG Shuguo, GE Jing. Study on the selection of AT rails for turnouts on passenger dedicated line[J]. China Railway Science, 2008, 29(3):63-67. 孟祥红,王平. 道岔转辙器轮载过渡区段优化设计研究[J]. 铁道工程学报,2013(5):35-39. MENG Xianghong, WANG Ping. Research on optimal design of wheel load transition zone of turnout switch[J]. Journal of Railway Engineering Society, 2013, 5:35-39. 荆果,王平. 客运专线道岔转辙器部分轮载过渡段优化设计研究[J]. 铁道建筑,2011(9):100-102. 朱剑月. 铰接式岔枕道岔结构落轴冲击数值分析[J]. 同济大学学报:自然科学版,2011,39(8):1155-1160. ZHU Jianyue. Numerical analysis on dynamic behavior of articulated switch sleeper in turnout system under wheel load drop[J]. Journal of Tongji University:Natural Science, 2011, 39(8):1155-1160. 孟祥红. 哈大高铁60 kg/m钢轨62号高速道岔关键制造技术研究[J]. 铁道工程学报,2015(7):41-45. MENG Xianghong. Research on the critical manufacturing technology of 60 kg/m 62# high-speed turnout of Harbin-Dalian high speed railway[J]. Journal of Railway Engineering Society, 2015(7):41-45. 袁宝军,费维周. 时速250 km客运专线铁路60 kg/m钢轨18号单开道岔制造工艺[J]. 铁道标准设计,2006(增刊):179-181. 王阿利,费维周. 时速350 km客运专线铁路60 kg/m钢轨42号单开道岔的制造[J]. 铁道标准设计,2010(3):5-8. 张洲旭. 时速350公里60 kg/m钢轨18号高速道岔制造工艺优化[J]. 山西建筑,2012,38(6):137-139. 毛建平. 60 kg/m钢轨12号客运专线道岔制造质量控制[J]. 山西建筑,2013,39(34):165-167. 周文,刘学毅. 高速道岔尖轨矫直的有限元分析[J]. 西南交通大学学报,2008,43(1):82-95. ZHOU Wen, LIU Xueyi. FEM simulation of straightening tongue rail of high-speed turnout[J]. Journal of Southwest Jiaotong University, 2008, 43(1):82-95. SRIMANI S L, BASU J. An investigation for control of residual stress in roller-straightened rails[J]. Journal of Strain Analysis for Engineering Design, 2013, 38(3):261-268. 蒋荣国. 高速道岔尖轨制造技术研究[D]. 成都:西南交通大学,2012. ZHANG Yinhua, ZHOU Qingyue, CHEN Zhaoyang, et al. Test study on the high strength rails of heavy haul railway[J]. China Railway Science. 2010, 31(4):6-20. LI D Z, SUN M Y, WANG P, et al. Process modelings and simulations of heavy castings and forgings[C]//The 11th International Conference on Numerical Methods in Industrial Forming Processes:Numiform. New York:AIP Publishing. 2013, 1532(1):81-94. 章欣. 60 kg/m钢轨1/12可动心轨辙叉单开道岔组装、铺设工艺[J]. 铁道建筑,1995(10):20-23. 刘皓. 客运专线60 kg/m钢轨18号可动心轨辙叉的组装及质量控制[J]. 铁道建筑,2010(9):111-113. 庹军,秦飞,张晓星. 客运专线路基段42号板式无砟道岔运输及组装方案[J]. 铁道建筑技术,2012(3):101-104. LIU Hao. The Transportation and assembling plan for ballastless slab turnout type No. 42 of passenger dedicated railway subgrade section[J]. Railway Construction Technology, 2012(3):101-104. 张长青. 我国铁路客运专线42号道岔运输方案研究[J]. 铁道运输与经济,2012,34(6):74-77. ZHANG Changqing. Research on the transport scheme of the No.42 turnout of railway passenger dedicated line in China[J]. Railway Transport and Economy, 2012, 34(6):74-77. 方向明,郭勇. 厦深铁路42号大号码道岔铺设施工工艺研究[J]. 铁道标准设计,2013(9):18-21. FANG Xiangming, GUO Yong. Study on the construction technology of the laying of No. 42 large number turnout in Xiamen-Shenzhen railway line[J]. Railway Standard Design, 2013(9):18-21. 马智长. 时速250公里60 kg/m钢轨18号有砟道岔组装和铺设[J]. 海峡科学,2011(10):52-55. 代永波. 时速250 km客运专线铁路60 kg/m钢轨18号单开道岔铺设与养护[D]. 长沙:中南大学,2008. 全顺喜,王平,伍曾. 客运专线无砟轨道道岔精调系统的研究与应用[J]. 铁道标准设计,2010(2):36-39. 陆红吉,译. 道岔检测系统设施的评估及使用方法[J]. 西铁科技,2012(4):53-54. 欧阳敏. 高速道岔工务参数检测仪的设计与实现[D]. 成都:西南交通大学,2008. 吴淑定. 数字化检测与立体显示技术在高速铁路道岔检测中的应用研究[D]. 成都:西南交通大学,2014. 刘克强. 高速客运专线道岔监测系统研究及应用[J]. 中国铁路,2009(4):38-41. 解大勇. 高铁道岔监测系统设计[J]. 信息通信,2014(4):71-72. CHEN R, WANG P, XU H. Integrated monitoring system for rail damage in high speed railway turnout[C]//International Conference on Digital Manufacturing and Automation. Piscataway:IEEE Press, 2013:704-708. 徐井芒. 高速道岔曲尖轨磨耗仿真分析研究[D]. 成都:西南交通大学,2015. MARKINE V L, STEENBERGEN M J M M, SHEVTSOV I Y. Combatting RCF on switch points by tuning elastic track properties[J]. Wear, 2011, 271:158-167. JOHANSSON A, PALSSON B, EKH M, et al. Simulation of wheel-rail contact and damage in switches and crossings[J]. Wear, 2011, 271:472-481. PALSSON B A, NIELSEN J C O. Wheel-rail interaction and damage in switches and crossings[J]. Vehicle System Dynamics, 2011, 50(1):43-58. 王树国,司道林,王猛,等. 高速铁路道岔尖轨降低值对行车平稳性影响机理研究[J]. 中国铁道科学,2014,5(3):28-33. WANG Shuguo, SI Daolin, WANG Meng, et al. Influence of value reduced for swith rail of high speed railway on riding quality[J]. China Railway Science, 2014, 5(3):28-33. MAGEL E E, KALOUSEK J. The application of contact mechanics to rail profile design and rail grinding[J]. Wear, 2002, 253(1/2):308-316. MAGEL E, RONEY M, KALOUSEK J, et al. The blending of theory and practice in modern rail grinding[J]. Fatigue and Fracture of Engineering Materials and Structures, 2003, 26:921-929. 刘月明,李建勇,蔡永林,等. 钢轨打磨技术现状和发展趋势[J]. 中国铁道科学,2014,35(4):29-37. LIU Yueming, LI Jianyong, CAI Yonglin, et al. Current state and development trend of rail grinding technology[J]. China Railway Science, 2014, 35(4):29-37. 金学松,杜星,郭俊,等. 钢轨打磨技术研究进展[J]. 西南交通大学学报,2010,45(1):1-11. JIN Xuesong, DU Xing, GUO Jun, et al. State of arts of research on rail grinding[J]. Journal of Southwest Jiaotong University, 2010, 45(1):1-11. 周清跃,田常海,张银花,等. 高速铁路钢轨打磨关键技术研究[J]. 中国铁道科学,2012,33(2):66-70. ZHOU Qingyue, TIAN Changhai, ZHANG Yinhua, et al. Research on key rail grinding technology of high-speed railway[J]. China Railway Science, 2012, 33(2):66-70.
点击查看大图
计量
- 文章访问数: 853
- HTML全文浏览量: 100
- PDF下载量: 630
- 被引次数: 0