• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

轮轨高速滚动接触及钢轨疲劳裂纹扩展研究

江晓禹 李孝滔 李煦 曹世豪

江晓禹, 李孝滔, 李煦, 曹世豪. 轮轨高速滚动接触及钢轨疲劳裂纹扩展研究[J]. 西南交通大学学报, 2016, 29(2): 274-281. doi: 10.3969/j.issn.0258-2724.2016.02.007
引用本文: 江晓禹, 李孝滔, 李煦, 曹世豪. 轮轨高速滚动接触及钢轨疲劳裂纹扩展研究[J]. 西南交通大学学报, 2016, 29(2): 274-281. doi: 10.3969/j.issn.0258-2724.2016.02.007
JIANG Xiaoyu, LI Xiaotao, LI Xu, CAO Shihao. Research on Wheel/Rail Rolling Contact at High Speed and Fatigue Crack Propagation in Rail[J]. Journal of Southwest Jiaotong University, 2016, 29(2): 274-281. doi: 10.3969/j.issn.0258-2724.2016.02.007
Citation: JIANG Xiaoyu, LI Xiaotao, LI Xu, CAO Shihao. Research on Wheel/Rail Rolling Contact at High Speed and Fatigue Crack Propagation in Rail[J]. Journal of Southwest Jiaotong University, 2016, 29(2): 274-281. doi: 10.3969/j.issn.0258-2724.2016.02.007

轮轨高速滚动接触及钢轨疲劳裂纹扩展研究

doi: 10.3969/j.issn.0258-2724.2016.02.007
基金项目: 

国家自然科学基金资助项目(11472230)

国家自然科学基金重点资助项目(U1134202,E050303)

四川省青年科技创新团队资助项目(2013TD0004)

详细信息
    作者简介:

    江晓禹(1965-),博士,1998年起至今任职于西南交通大学,现为力学与工程学院教授,博士生导师.E-mail:xiaoyujiang8@sohu.com;李孝滔(1991-),博士研究生.研究方向为疲劳与断裂.E-mail:1293657604@qq.com

    江晓禹(1965-),博士,1998年起至今任职于西南交通大学,现为力学与工程学院教授,博士生导师.E-mail:xiaoyujiang8@sohu.com;李孝滔(1991-),博士研究生.研究方向为疲劳与断裂.E-mail:1293657604@qq.com

Research on Wheel/Rail Rolling Contact at High Speed and Fatigue Crack Propagation in Rail

  • 摘要: 为研究高速列车轮轨滚动接触疲劳损伤,通过引入应变率效应,获得了轮轨接触作用力的分布,并基于最大周向应力判据,对车轮滚过裂纹过程中裂纹可能的扩展角度进行了统计分析,确定了钢轨表面疲劳裂纹的扩展方向.根据威布尔分布,用可能扩展角度均值作为裂纹扩展方向,获得了裂纹扩展路径.研究结果表明,低速列车钢轨的裂纹扩展为张开型裂纹逐渐变为滑开型裂纹,高速列车的钢轨裂纹扩展基本都是张开型裂纹;高速列车钢轨的裂纹扩展速率快于低速列车钢轨;模拟的裂纹路径与实验测得的裂纹路径吻合,验证了用可能扩展角度的均值作为裂纹扩展方向的合理性.

     

  • 金学松,沈志云. 轮轨滚动接触疲劳问题研究的最新进展[J]. 铁道学报,2001,2(2):92-108. JIN Xuesong, SHEN Zhiyun. Rolling contact fatigue of wheel/rail and its advanced research progress[J]. Journal of the China Railway Society, 2001, 2(2):92-108.
    EKBERG A, KABO E, NIELSEN J C O, et al. Subsurface initiated rolling contact fatigue of railway wheels as generated by rail corrugation[J]. International Journal of Solids Structures, 2007, 44(24):7975-7987.
    GARNHAM J E, DAVIS C L. The role of deformed rail microstructure on rolling contact fatigue initiation[J]. Wear, 2008, 265(9):1363-1372.
    CANADINC D, SEHITOGLU H, VERZAL K. Analysis of surface crack growth under rolling contact fatigue[J]. International Journal of Fatigue, 2008, 30(9):1678-1689.
    ERDOGAN F, SIH G C. On the crack extension in plates under plane loading with transverse shear[J]. Journal of Basic Eng Asme, 1963, 85:519-527.
    SIH G C. Mechanics of fracture method of analysis and solution of crack problems[J]. NoordHoff Int. Publishers, 1973, 5:10-16.
    PALANISWAMY K, KNAUSS W G. Propagation of crack under general in-plane tension[J].International Journal of Fracture, 1972, 8:114.
    RICHARD H A, FULLAND M, SANDER M. Theoretical crack path prediction[J]. Fatigue Fract Engng Mater Struct, 2005, 28:3-12.
    DUBOURG M C, LAMACQ V. A predictive rolling contact fatigue crack growth model:onset of branching, direction, and growth-role of dry and lubricated conditions on crack patterns[J]. J Tribol Transact ASME, 2002, 124(4):680-688.
    HOURLIER F, PINEAu A. Propagation of fatigue cracks under polymodal loading[J]. Fatigue Fracture of Engineering Materials Structures, 1982, 5(4):287-302.
    BAIETTO M C, PIERRES E, GRAVOUIL A, et al. Fretting fatigue crack growth simulation based on a combined experimental and XFEM strategy[J]. International Journal of Fatigue, 2013, 47(1):31-43.
    TROLL B, BAIETTO M C, GRAVOUIL A, et al. 2D fatigue crack propagation in rails taking into account actual plastic stresses[J]. Engineering Fracture Mechanics, 2014, 123(1):163-181.
    BROUZOULIS J, EKH M. Crack propagation in rails under rolling contact fatigue loading conditions based on material forces[J]. International Journal of Fatigue, 2012, 45(3):98-105.
    BAIETTO M C, PIERRES E, GRAVOUIL A. A multi-model X-FEM strategy dedicated to frictional crack growth under cyclic fretting fatigue loadings[J]. International Journal of Solids Structures, 2010, 47(10):1405-1423.
    BOYCE B L, DILMORB M F. The dynamic tensile behavior of tough ultrahigh-strength steels at strain-rates from 0.0002 s-1 to 200 s-1[J]. International Journal of Impact Engineering, 2009, 36:263-271.
    田越,程育仁,刘学文. 高应变率下U71Mn轨钢动态力学性能研究[J]. 中国铁道科学,1992,13:34-42. TIAN Yue, CHENG Yuren, LIU Xuewen. Studies on the dynamic behaviors of U71Mn rail steel under high strain rates[J]. China Railway Science, 1992, 13:34-42
    ALEGRE J M, CUESTA I I. Some aspects about the crack growth FEM simulations under mixed-mode loading[J]. International Journal of Fatigue, 2010, 32(7):1090-1095.
    高镇同,熊峻江. 疲劳可靠性分析[M]. 北京:北京航空航天大学出版社,2000:79-84
    盛骤,谢式千,潘承毅. 概率论与数理统计[M]. 北京:高等教育出版社,2008:276-282.
    周小林,向延念,陈秀方. U71Mn50 kgm-1普通碳素钢钢轨疲劳裂纹扩展速率试验研究[J]. 中国铁道科学,2004,25(3):86-90. ZHOU Xiaolin, XIANG Yannian, CHEN Xiufang. Test and study of fatigue fracture propagation of U71Mn50 kgm-1 ordinary carbon steel rail[J]. China Railway Science, 2004, 25(3):86-90.
    姚拴宝,郭迪龙,杨国伟,等. 高速列车气动阻力分布特性研究[J]. 铁道学报,2012,34(7):18-23. YAO Shuanbao, GUO Dilong, YANG Guowei, et al. Distribution of high-speed train aerodynamic drag[J]. Journal of the China Railway Society, 2012, 34(7):18-23.
    毛军,郗艳红,杨国伟. 列车编成辆数对高速列车横风气动特性影响的数值分析[J]. 中国铁道科学,2012,33(1):78-85. MAO Jun, XI Yanhong, YANG Guowei. Numerical analysis on the influence of train formation on the aerodynamic characteristics of high speed trains under crosswind[J]. China Railway Science, 2012, 33(1):78-85.
    郦正能,张纪奎. 工程断裂力学[M]. 北京:北京航空航天大学出版社,2012:191-195.
    郭火明,王文健,刘腾飞,等. 重载铁路钢轨损伤行为分析[J]. 中国机械工程,2014,25(2):269-270. GUO Huoming, WANG Wenjian, LIU Tengfei, et al. Analysis of damage behavior of heavy-haul railway rails[J]. China Mechanical Engineering, 2014, 25(2):269-270.
  • 期刊类型引用(20)

    1. 张启洞,闫华东,陈诚,杨康. 基于ABAQUS/FRANC3D的钢轨三维表面裂纹的扩展分析. 兵器装备工程学报. 2024(02): 246-253 . 百度学术
    2. 陈炫昂,葛玖浩,胡宝旺. 交流电磁场钢轨表面裂纹高速检测信号处理模块开发. 测控技术. 2024(07): 1-8 . 百度学术
    3. 李军达,曾泽群,关凯楠,邹丽,杨鑫华. 基于网格不敏感结构应力的Q450NQR1焊接接头疲劳性能分析与表征. 焊接技术. 2024(10): 24-28+145-146 . 百度学术
    4. 张学飞,曹兆风,王志坚. 基于FRANC3D的轮轨疲劳裂纹扩展研究. 机械设计与制造. 2023(03): 38-42 . 百度学术
    5. 李文俊,张雪朋,江晓禹. 分布位错法求解次表面裂纹的力学行为. 四川轻化工大学学报(自然科学版). 2022(03): 34-40 . 百度学术
    6. 赵宇,张旭. 基于等效结构应力的地铁车辆车体疲劳寿命分析. 机械工程与自动化. 2022(06): 41-44 . 百度学术
    7. 焦彬洋. 钢轨表面裂纹角度对疲劳裂纹扩展行为的影响. 铁路采购与物流. 2021(12): 85-88+93 . 百度学术
    8. 王强胜,李孝滔,昝晓东,生月,江晓禹. 分布位错法研究钢轨表面边缘直裂纹的力学行为. 表面技术. 2020(02): 200-211 . 百度学术
    9. 郝秋实,沈毅,王艳,章欣,刘俭. 高速铁路轮轨滚动噪声的分形描述及分形维估计. 声学学报. 2020(02): 196-204 . 百度学术
    10. 王平,盛宏威,冀凯伦,杨元,李开宇,姚恩涛,贾银亮,石玉. 高速载运设施的无损检测技术应用和发展趋势. 数据采集与处理. 2020(02): 195-209 . 百度学术
    11. 蔡宇天,赵鑫,陈佳明,刘永锋,温泽峰. 城际动车组车轮Ⅰ类滚动接触疲劳机理研究. 中南大学学报(自然科学版). 2020(09): 2653-2662 . 百度学术
    12. HAO Qiushi,SHEN Yi,WANG Yan,ZHANG Xin,LIU Jian. Fractal description and fractal dimension estimation of the wheel-rail rolling noise in high-speed railway. Chinese Journal of Acoustics. 2020(04): 526-540 . 必应学术
    13. 张事成,贾银亮,冀凯伦,王平. 一种钢轨顶面伤损漏磁信号缺陷识别方法. 电子测量技术. 2020(21): 10-14 . 百度学术
    14. 王强胜,昝晓东,生月,江晓禹. 基于有限元模拟探究超载对钢轨磨耗的影响. 成都大学学报(自然科学版). 2019(01): 81-85 . 百度学术
    15. 王勃,张阳博,左宏,王厚锦. 压应力对压剪裂纹扩展的影响研究. 力学学报. 2019(03): 845-851 . 百度学术
    16. 昝晓东,王强胜,生月,江晓禹. 考虑塑性的钢轨表面疲劳微裂纹分析. 表面技术. 2018(11): 151-156 . 百度学术
    17. 闫子权,孙林林,肖俊恒,涂英辉,司道林. 高速铁路工务工程前沿基础理论与科学问题——轮轨关系. 铁道建筑. 2018(11): 13-19 . 百度学术
    18. 昝晓东,李孝滔,邢帅兵,张言库,江晓禹. 疲劳裂纹扩展引起的钢轨表面剥离研究. 铁道科学与工程学报. 2018(12): 3082-3088 . 百度学术
    19. 王亦军,董奇志,肖守讷,李西安. 等效结构应力法的焊接疲劳评估. 河南科技大学学报(自然科学版). 2017(04): 16-19+116 . 百度学术
    20. 田贵云,高斌,高运来,王平,王海涛,石永生. 铁路钢轨缺陷伤损巡检与监测技术综述. 仪器仪表学报. 2016(08): 1763-1780 . 百度学术

    其他类型引用(38)

  • 加载中
计量
  • 文章访问数:  758
  • HTML全文浏览量:  100
  • PDF下载量:  508
  • 被引次数: 58
出版历程
  • 收稿日期:  2015-10-23
  • 刊出日期:  2016-04-25

目录

    /

    返回文章
    返回