Research on Wheel/Rail Rolling Contact at High Speed and Fatigue Crack Propagation in Rail
-
摘要: 为研究高速列车轮轨滚动接触疲劳损伤,通过引入应变率效应,获得了轮轨接触作用力的分布,并基于最大周向应力判据,对车轮滚过裂纹过程中裂纹可能的扩展角度进行了统计分析,确定了钢轨表面疲劳裂纹的扩展方向.根据威布尔分布,用可能扩展角度均值作为裂纹扩展方向,获得了裂纹扩展路径.研究结果表明,低速列车钢轨的裂纹扩展为张开型裂纹逐渐变为滑开型裂纹,高速列车的钢轨裂纹扩展基本都是张开型裂纹;高速列车钢轨的裂纹扩展速率快于低速列车钢轨;模拟的裂纹路径与实验测得的裂纹路径吻合,验证了用可能扩展角度的均值作为裂纹扩展方向的合理性.Abstract: To analyze the rolling contact fatigue damage of wheel/rail for high-speed trains, the distribution of contact forces between wheel and rail was obtained by introducing the strain-rate effect. Based on the maximum circumferential stress, the possible propagation angle of the crack was counted when a wheel roll over a crack and the crack propagation directions were determined. According to the Weibull distribution, crack path was obtained by using the average crack propagation angle as the crack propagation direction. The results show that the crack mode becomes to sliding crack from opening crack for low-speed trains. The crack mode is always opening crack for high-speed trains. The crack propagation velocity for high-speed trains is faster than that of low-speed trains. The simulation crack path is in agreement with the experimental crack path, which proves that it is reasonable to use the average crack propagation as crack propagation direction.
-
Key words:
- rolling contact fatigue /
- finite element /
- crack propagation /
- Weibull distribution
-
金学松,沈志云. 轮轨滚动接触疲劳问题研究的最新进展[J]. 铁道学报,2001,2(2):92-108. JIN Xuesong, SHEN Zhiyun. Rolling contact fatigue of wheel/rail and its advanced research progress[J]. Journal of the China Railway Society, 2001, 2(2):92-108. EKBERG A, KABO E, NIELSEN J C O, et al. Subsurface initiated rolling contact fatigue of railway wheels as generated by rail corrugation[J]. International Journal of Solids Structures, 2007, 44(24):7975-7987. GARNHAM J E, DAVIS C L. The role of deformed rail microstructure on rolling contact fatigue initiation[J]. Wear, 2008, 265(9):1363-1372. CANADINC D, SEHITOGLU H, VERZAL K. Analysis of surface crack growth under rolling contact fatigue[J]. International Journal of Fatigue, 2008, 30(9):1678-1689. ERDOGAN F, SIH G C. On the crack extension in plates under plane loading with transverse shear[J]. Journal of Basic Eng Asme, 1963, 85:519-527. SIH G C. Mechanics of fracture method of analysis and solution of crack problems[J]. NoordHoff Int. Publishers, 1973, 5:10-16. PALANISWAMY K, KNAUSS W G. Propagation of crack under general in-plane tension[J].International Journal of Fracture, 1972, 8:114. RICHARD H A, FULLAND M, SANDER M. Theoretical crack path prediction[J]. Fatigue Fract Engng Mater Struct, 2005, 28:3-12. DUBOURG M C, LAMACQ V. A predictive rolling contact fatigue crack growth model:onset of branching, direction, and growth-role of dry and lubricated conditions on crack patterns[J]. J Tribol Transact ASME, 2002, 124(4):680-688. HOURLIER F, PINEAu A. Propagation of fatigue cracks under polymodal loading[J]. Fatigue Fracture of Engineering Materials Structures, 1982, 5(4):287-302. BAIETTO M C, PIERRES E, GRAVOUIL A, et al. Fretting fatigue crack growth simulation based on a combined experimental and XFEM strategy[J]. International Journal of Fatigue, 2013, 47(1):31-43. TROLL B, BAIETTO M C, GRAVOUIL A, et al. 2D fatigue crack propagation in rails taking into account actual plastic stresses[J]. Engineering Fracture Mechanics, 2014, 123(1):163-181. BROUZOULIS J, EKH M. Crack propagation in rails under rolling contact fatigue loading conditions based on material forces[J]. International Journal of Fatigue, 2012, 45(3):98-105. BAIETTO M C, PIERRES E, GRAVOUIL A. A multi-model X-FEM strategy dedicated to frictional crack growth under cyclic fretting fatigue loadings[J]. International Journal of Solids Structures, 2010, 47(10):1405-1423. BOYCE B L, DILMORB M F. The dynamic tensile behavior of tough ultrahigh-strength steels at strain-rates from 0.0002 s-1 to 200 s-1[J]. International Journal of Impact Engineering, 2009, 36:263-271. 田越,程育仁,刘学文. 高应变率下U71Mn轨钢动态力学性能研究[J]. 中国铁道科学,1992,13:34-42. TIAN Yue, CHENG Yuren, LIU Xuewen. Studies on the dynamic behaviors of U71Mn rail steel under high strain rates[J]. China Railway Science, 1992, 13:34-42 ALEGRE J M, CUESTA I I. Some aspects about the crack growth FEM simulations under mixed-mode loading[J]. International Journal of Fatigue, 2010, 32(7):1090-1095. 高镇同,熊峻江. 疲劳可靠性分析[M]. 北京:北京航空航天大学出版社,2000:79-84 盛骤,谢式千,潘承毅. 概率论与数理统计[M]. 北京:高等教育出版社,2008:276-282. 周小林,向延念,陈秀方. U71Mn50 kgm-1普通碳素钢钢轨疲劳裂纹扩展速率试验研究[J]. 中国铁道科学,2004,25(3):86-90. ZHOU Xiaolin, XIANG Yannian, CHEN Xiufang. Test and study of fatigue fracture propagation of U71Mn50 kgm-1 ordinary carbon steel rail[J]. China Railway Science, 2004, 25(3):86-90. 姚拴宝,郭迪龙,杨国伟,等. 高速列车气动阻力分布特性研究[J]. 铁道学报,2012,34(7):18-23. YAO Shuanbao, GUO Dilong, YANG Guowei, et al. Distribution of high-speed train aerodynamic drag[J]. Journal of the China Railway Society, 2012, 34(7):18-23. 毛军,郗艳红,杨国伟. 列车编成辆数对高速列车横风气动特性影响的数值分析[J]. 中国铁道科学,2012,33(1):78-85. MAO Jun, XI Yanhong, YANG Guowei. Numerical analysis on the influence of train formation on the aerodynamic characteristics of high speed trains under crosswind[J]. China Railway Science, 2012, 33(1):78-85. 郦正能,张纪奎. 工程断裂力学[M]. 北京:北京航空航天大学出版社,2012:191-195. 郭火明,王文健,刘腾飞,等. 重载铁路钢轨损伤行为分析[J]. 中国机械工程,2014,25(2):269-270. GUO Huoming, WANG Wenjian, LIU Tengfei, et al. Analysis of damage behavior of heavy-haul railway rails[J]. China Mechanical Engineering, 2014, 25(2):269-270.
点击查看大图
计量
- 文章访问数: 642
- HTML全文浏览量: 75
- PDF下载量: 508
- 被引次数: 0