Frequency-Dependent Characteristics of Air Spring
-
摘要: 为了研究空气弹簧不同物理参数对空气弹簧动态特性的影响,基于TPL-ASN空气弹簧模型的仿真软件ASDS建立了与试验工况一致的1/4车模型.利用该模型仿真分析节流孔直径、连接管路直径和长度、附加空气室体积、本体体积对空气弹簧频变特性的影响规律,并与试验结果进行对比分析.研究结果表明: TPL-ASN模型较准确地模拟不同物理参数的空气弹簧在不同激振频率下的动态特性;节流孔和连接管路对空气弹簧动态特性的影响主要体现在中频段,在低频段和高频段对空气弹簧动态特性影响较小;附加空气室对空气弹簧动态特性的影响主要体现在中低频段,在高频段对空气弹簧动态特性影响较小;空气弹簧本体对空气弹簧动态特性的影响主要体现在中高频段,在低频段对空气弹簧动态特性影响较小.Abstract: In order to study the influence of different physical parameters of an air spring on its dynamic characteristics, a quarter-car model consistent with experimental conditions was set up using the simulation software ASDS that is based on the TPL-ASN air spring model. With the model, influence laws of orifice diameter, connecting pipe diameter and length, auxiliary reservoir volume, and air spring bellow volume on frequency-dependent characteristics was simulated and analyzed. The simulation results were compared with the experimental results. The results show that the TPL-ASN model can accurately simulate the nonlinear characteristics of an air spring with different physical parameters at different excitation frequencies. The influence of the orifice and connecting pipe on dynamic characteristics of air spring is mainly reflected in the middle frequency range, and is less affected in low and high frequency ranges. The influence of the auxiliary reservoir volume on dynamic characteristics of air spring is mainly reflected in low and middle frequency ranges, and is less affected in the high frequency range. The influence of the air spring bellow volume on dynamic characteristics is mainly reflected in middle and high frequency ranges, and is less affected in the low frequency range.
-
Key words:
- air spring /
- frequency-dependent characteristics /
- orifice /
- connecting pipe /
- auxiliary reservoir /
- air spring bellow
-
张利国,张嘉钟,贾力萍,等. 空气弹簧的现状及其发展[J]. 振动与冲击,2007,26(2):146-151. ZHANG Liguo, ZHANG Jiazhong, JIA Liping, et al. Future and development of air springs[J]. Journal of Vibration and Shock, 2007, 26(2):146-151. 严隽耄,傅茂海. 车辆工程[M]. 3版.北京:中国铁道出版社,2009:79-88. 任晋峰. 高铁车辆车体振动基础性研究[D]. 大连:大连交通大学,2012. 张广世. 铁道车辆空气弹簧动力学模型的研究[D]. 上海:同济大学汽车学院,2006. 金炜东,吕乾勇,孙永奎. 基于Copula函数的高速列车转向架故障特征提取[J]. 西南交通大学学报,2015,50(4):676-682. JIN Weidong, LV Qianyong, SUN Yongkui. Extracting fault features of high-speed train bogies using copula function[J]. Journal of Southwest Jiaotong University, 2015, 50(4):676-682. EVANS J, BERG M. Challenges in simulation of rail vehicle dynamics[J]. Vehicle System Dynamics, 2009, 47(8):1023-1048. KUNIEDA M. Theory and experiment on vertical vibration of rolling stock equipped with air springs[J]. Railway Technical Research Report, 1958, 3(6):17-27. ODA N, NISHIMURA S. Vibration of air suspension bogies and their design[J]. Bulletion of the JSME, 1970, 13(55):43-50. SHIMOZAWA K, TOHTAKE T. An air spring model with non-linear damping for vertical motion[J]. Quarterly Report of RTRI, 2008, 49(4):209-214. QUAGLIA G, SORLI M. Air suspension dimensionless analysis and design procedure[J]. Vehicle System Dynamics, 2001, 35(6):443-475. NIETO A J, MORALES A L, GONZALEZ A, et al. An analytical model of pneumatic suspensions based on an experimental characterization[J]. Journal of Sound and Vibration, 2008, 313:290-307. DOCQUIER N, FISETTE P, JEANMART H. Model-Based evaluation of railway pneumatic suspensions[J]. Vehicle System Dynamics, 2008, 46(Sup. 1):481-493. DOCQUIER N, FISETTE P, JEANMART H. Multiphysic modelling of railway vehicles equipped with pneumatic suspensions[J]. Vehicle System Dynamics, 2007, 45(6):505-524. FACCHINETTI A, MAZZOLA L, ALFI S, et al. Mathematical modelling of the secondary airspring suspension in railway vehicles and its effect on safety and ride comfort[J]. Vehicle System Dynamics, 2010, 48(Sup.):429-449. 高红星,池茂儒,朱旻昊,等. 空气弹簧模型研究[J]. 机械工程学报,2015,51(4):108-115. GAO Hongxing, CHI Maoru, ZHU Minhao, et al. Study on air spring model[J]. Journal of Mechanical Engineering, 2015, 51(4):108-115. 池茂儒,高红星,张卫华,等. 基于辅助空间的空气弹簧非线性模型[J]. 中国铁道科学,2014,35(3):83-89. CHI Maoru, GAO Hongxing, ZHANG Weihua, et al. Nonlinear model of airspring based on auxiliary space[J]. China Railway Science, 2014, 35(3):83-89.
点击查看大图
计量
- 文章访问数: 750
- HTML全文浏览量: 210
- PDF下载量: 661
- 被引次数: 0