• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于医学影像学的心血管支架力学性能分析

徐江 杨杰 杨基 黄楠 刘亚龄

徐江, 杨杰, 杨基, 黄楠, 刘亚龄. 基于医学影像学的心血管支架力学性能分析[J]. 西南交通大学学报, 2016, 29(1): 201-208. doi: 10.3969/j.issn.0258-2724.2016.01.028
引用本文: 徐江, 杨杰, 杨基, 黄楠, 刘亚龄. 基于医学影像学的心血管支架力学性能分析[J]. 西南交通大学学报, 2016, 29(1): 201-208. doi: 10.3969/j.issn.0258-2724.2016.01.028
XU Jiang, YANG Jie, YANG Ji, HUANG Nan, LIU Yaling. Mechanical Properties Analysis of Coronary Stent Based on Medical Images[J]. Journal of Southwest Jiaotong University, 2016, 29(1): 201-208. doi: 10.3969/j.issn.0258-2724.2016.01.028
Citation: XU Jiang, YANG Jie, YANG Ji, HUANG Nan, LIU Yaling. Mechanical Properties Analysis of Coronary Stent Based on Medical Images[J]. Journal of Southwest Jiaotong University, 2016, 29(1): 201-208. doi: 10.3969/j.issn.0258-2724.2016.01.028

基于医学影像学的心血管支架力学性能分析

doi: 10.3969/j.issn.0258-2724.2016.01.028
基金项目: 

国家自然科学基金资助项目(10872176)

详细信息
    作者简介:

    徐江(1987-),男,博士研究生,研究方向为生物力学、工程力学,E-mail:xujiang0123@163.com

    通讯作者:

    杨杰(1970-),男,教授,博士,博士生导师,研究方向为生物力学、工程力学,E-mail:yangchenjie@swjtu.cn

Mechanical Properties Analysis of Coronary Stent Based on Medical Images

  • 摘要: 为了寻找更为简便的基于医学影像学狭窄血管建模的方法,利用特征轮廓提取的简化建模方法,建立了基于狭窄冠脉CT图像的血管支架-狭窄血管耦合有限元模型,对比分析了血管支架在基于CT的狭窄血管模型和理想化狭窄血管模型中的力学行为,引用临床研究结果分析了两种模型计算的合理性.研究结果表明,两种模型在支架的应力分布、撑开刚度、回弹率、狗骨头 率、血管管腔面积等力学性质上均存在差异,基于CT模型中,血管平均应力1.22 MPa,最小管腔面积6.1 mm2;理想化模型中血管平均应力1.54 MPa,最小管腔面积5.1 mm2;基于CT的有限元模型分析结果更接近临床研究结果.

     

  • GARG S, SERRYS P W. Coronary stents current status[J]. Journal of the American College of Cardiology, 2010, 56(1): 1-41.
    KUTRYK M J B, ONG A T L. Drug therapy: coronary-artery stents[J]. The New England Journal of Medicine, 2006, 354(1): 483-495.
    SANGIORGI G, MELZI G, AGODTONI P, et al. Engineering aspects of stents design and their translation into clinical practice[J]. Annali Dellistituto Superiore Di Sanita, 2007, 43(1): 89-100.
    ETAVE F, FINET G, BOIVIN M, et al. Mechanical properties of coronary stents determined by using finite element analysis[J]. Journal of Biomechanics, 2001, 34(1): 1065-1075.
    李建军,罗七一,谢志勇,等. 冠脉支架的疲劳寿命的有限元分析[J]. 医用生物力学,2010,25(1): 68-73. LI Jianjun, LUO Qiyi, XIE Zhiyong, et al. Fatigue life analysis of coronary stent by finite element analysis[J]. Journal of Medical Biomachanics, 2010, 25(1): 68-73.
    李红霞,张艺浩,王希诚. 基于有限元模拟的支架扩张、血流动力学及支架疲劳分析[J]. 医用生物力学,2012,27(2): 178-185. LI Hongxia, ZHANG Yihao, WANG Xicheng. Analysis of stent expansion, blood flow and fatigue life based on finite element method[J]. Journal of Medical Biomechanics, 2012, 27(2): 178-185.
    杨杰,黄楠,杜全兴. 血管支架随机失稳扩展均匀性问题的模型和应用[J]. 力学学报,2008,40(1): 79-85. YANG Jie, HUANG Nan, DU Quanxing. Model and applicaiton of uniformity expansion in randomized structure of intravascular stent[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(1): 79-85.
    GERVASO F, CAPELLI C, PETRINI L, et al. On the effects of different strategies in modeling balloon-expandable stenting by means of finite element method[J]. Journal of Biomechanics, 2008, 41(1): 1206-1212.
    BEULE M D, MORTIER P, CARLIER S G, et al. Realistic finite element-based stent design: the impact of balloon folding[J]. Journal of Biomechanics, 2008, 41(1): 383-389.
    YANG Jie, HUANG Nan, DU Quanxing. A non-uniform expansion mechanical safety model of the stent[J]. Journal of Medical Engineering Technology, 2009, 33(1): 525-531.
    LALLY C, DOLAN F, PRENDERGAST P J. Cardiovascular stent design and vessel stress: a finite element analysis[J]. Journal of Biomechanics, 2005, 38(1): 1574-1581.
    MORTIER P, HOLZAPFEL G A, BEULE M, et al. A novel simulation strategy for stent insertion and deployment in curved coronary bifurcation: comparison of three drug-eluting stents[J]. Annals of Biomedical Engineering, 2010, 38(1): 88-99.
    ZAHEDMANESH H, JOHN K D, LALLY C. Simulation of a balloon expandable stent in a realistic coronary artery-determination of the optimum modelling strategy[J]. Journal of Biomechanics, 2010, 43(11): 2126-2132.
    KIOUSIS D E, GASSER T C, HOLZAPFEL G A. A numerical model to study the interaction of vascular stents with human atherosclerotic lesions[J]. Annals of Biomedical Engineering, 2007, 35(11): 1857-1869.
    KIOUSIS D E, GASSER T C, HOLZAPFEL G A. Smooth contact strategies with emphasis on the modeling of balloon angioplasty with stenting[J]. Int. J. Numer. Meth. Engng, 2008, 75(1): 826-855.
    CHAN A H, CHAN R C, SHISHKOV M, et al. Mechanical analysis of atherosclerotic plaques based on optical coherence tomography[J]. Annals of Biomedical Engineering, 2004, 32(11): 1494-1503.
    GASSER T C, OGDEN R W, HOLZAPFEL G A. Hyperelastic modeling of arterial layers with distributed collagen fiber orientations[J]. Journal of the Royal Society Interface, 2006, 3(1): 15-35.
    GASTALDI D, MORLACCHI S, NICHETTI R, et al. Modelling of the provisional side-branch stenting approach for the treatment of atherosclerotic coronary bifurcations: effects of stent positioning[J]. Journal of Biomechanics and Modeling in Mechanobiology, 2010, 9(5): 551-561.
    HOFFMANN R, SMINTZ G, DUSSAILLANT G R, et al. Patterns and mechanisms of in-stent restenosis: a serial intravascular ultrasound study[J]. Circulation, 1996, 94(1): 1247-1254.
  • 加载中
计量
  • 文章访问数:  831
  • HTML全文浏览量:  52
  • PDF下载量:  331
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-01
  • 刊出日期:  2016-01-25

目录

    /

    返回文章
    返回