Holistic High-Speed Train Subsystem Simulation Platform Based on CAD/CAE Integration
-
摘要: 为了使现有的通用商业多体动力学与有限元软件能满足高速列车子系统仿真建模的需求,利用开源组件和动态封装技术实现了可扩展弹性仿真平台架构框架,并基于该框架以高速列车弓网系统为例开发了高速列车子系统仿真平台(TPL. PC). 该仿真平台的构建表明,所提出的框架能够提供几何建模、网格生成与编辑、数值代码求解和三维实时可视化高速列车仿真平台所需的常用功能,解决了子系统几何模型和仿真模型在这些环节中的互用性问题,使得各异构子系统之间在仿真计算迭代步的中间结果数据和最终仿真结果文件交换通畅.Abstract: To enable general-purpose commercial multi-body dynamics and finite element software to meet the requirements of simulation and modeling of a high-speed train subsystem, an extensible and flexible framework was set up by utilizing open-source components and the dynamic encapsulating technology. As a case study, a high-speed train pantograph-catenary subsystem simulation platform (TPL. PC) was developed based on this framework. The application result shows that the proposed framework can provide all necessary functions for the high-speed train simulation platform, such as geometric modeling, mesh generation and editing, numerical solution, and 3D real-time visualization. In addition, it can overcome the difficulty of interoperability of geometry models and simulation models in above aspects among different subsystems, which makes the temporal data produced by iterative computation and the result data exchange smoothly.
-
沈志云. 论我国高速铁路技术创新发展的优势[J]. 科学通报,2012,57(8): 594-599. SHEN Zhiyun. The superiorities in innovatively developing high-speed train technology in China[J]. Chinese Science Bulletin, 2012, 57(8): 594-599. 张卫华,张曙光. 高速列车耦合大系统动力学及服役模拟[J]. 西南交通大学学报,2008,43(2): 147-152. ZHANG Weihua, ZHANG Shuguang. Dynamics and service simulation for general coupling system of high-speed trains[J]. Journal of Southwest Jiaotong University, 2008, 43(2): 147-152. 赵飞,刘志刚,韩志伟. 随机风场对弓网系统动态性能影响研究[J]. 铁道学报,2012,34(10): 36-42. ZHAO Fei, LIU Zhigang, HAN Zhiwei. Simulation study on influence of stochastic wind field to dynamic behavior of pantograph-catenary system[J]. Journal of the China Railway Society, 2012, 34(10): 36-42. LEE J H, KIM Y G, PAIK J S. Performance evaluation and design optimization using differential evolutionary algorithm of the pantograph for the high-speed train[J]. Journal of Mechanical Science and Technology, 2012, 26(10): 3253-3260. JUNG S P, KIM Y G, PAIK J S, et al. Estimation of dynamic contact force between a pantograph and catenary using the finite element method[J]. Journal of Computational and Nonlinear Dynamics, 2012, 7(10): 0410061-1- 041006-13. 张卫华,黄标,梅桂明. 基于虚拟样机技术的高速弓网系统研究[J]. 铁道学报,2005,27(4): 30-35. ZHANG Weihua, Huang Biao, MEI Guiming. Study on pantograph-catenary system based on virtual prototyping[J]. Journal of the China Railway Society, 2005, 27(4): 30-35. 梅桂明. 受电弓-接触网系统动力学研究[D]. 成都:西南交通大学,2010. BOBILLOT A, CLEON L M, COLLINA A, et al. Pantograph-catenary: a high-speed European couple[C]// Proceedings of the World Congress on Railway Research. Seoul: UIC, 2008: 1-8. BECKER K, KONIG A, RESCH U, et al. Cotenaries for high-speed lines: a subject for research[J]. ETR-Eisenbahantechnische Rundschau, 1995, 44(1/2): 64-72. EINBOLD M, DECKART U. Famos-ein programm zur simulation von oberleitungen und stromabnehmer(famos: a program for the simulation of catenaries and pantographs)[J]. ZEV+DET Glases Annalen, 1996, 120(6): 239-243. VEITL A, ARNOLD M. Coupled simulation of multibody systems and elastic structures[C]//Proceedings of Euromech Colloquium 404 Advances in Computational Multibody Dynamics. Lisbon:, 1999: 635-644. SONG I, YANG J. A scene graph based visualization method for representing continuous simulation data[J]. Computers in Industry, 2011, 62(10): 301-310. 于万聚. 高速电气化铁路接触网[M]. 成都:西南交通大学出版社,2003: 1-11. BERGEAUD V, LEFEBVRE V. SALOME: a software integration platform for multi-physics[C]//Pre-Processing and Visualization. Tokyo:, 2010: 21-29. CHAULIAC C, ARAGONES J M, BESTION D, et al. NURESIM a European simulation platform for nuclear reactor safety: multi-scale and multi-physics calculations, sensitivity and uncertainty analysis[J]. Nuclear Engineering and Design, 2011, 241(9): 3416-3426. JAY J B, WAEL R E, LEE M H, et al. Designing a component-based architecture for the modeling and simulation of nuclear fuels and reactors[C]// Proceedings of the 2009 Workshop on Component-Based High Performance Computing. New York: ACM, 2009: 1-4. NUNIO F, MANIL P. SALOME as a platform for magneto-mechanical simulation[J]. IEEE Transactions on Applied Superconductivity, 2012, 22(3): 4904904-4904908. RIVEROLA F F, GLEZ P D, LOPEZ F H, et al. A JAVA application framework for scientific software development[J]. Software Practice and Experience, 2012, 42(8): 1015-1036. WAEL R E, DAVID E B, LEE A B, et al. Component framework for coupled integrated fusion plasma simulation[C]//Component and Framework Technology in High-Performance and Scientific Computing. New York: ACM, 2007: 93-100.. PARSONS D, RASHID A, TELEA A, et al. An architectural pattern for designing component-based application frameworks[J]. Software Practice and Experience, 2006, 36(2): 157-190. 杨双荣,胡沙,李建军. CAD数据交换与互操作性的研究[J]. 计算机工程与设计,2010,32(7): 1580-1584. YANG Shuangrong, HU Sha, LI Jianjun. CAD data exchange and interoperability[J]. Computer Engineering and Design, 2010, 32(7): 1580-1584. VERGEEST J S M, HORVATH I. Where interoperability ends[C]//Proceedings of 2001 Computers and Information in Engineering Conference. Pittsburgh: ASME, 2001: 1-8. SONG I H, YANG J, JOC H, et al. Development of a lightweight CAE middleware for CAE data exchange[J]. International Journal of Computer Integrated Manufacturing, 2009, 22(9): 823-835. 雷国东,柳贡民,明平剑,等. CGNS API和FVM在非结构混合网格计算中的应用[J]. 计算物理,2007,24(3): 277-281. LEI Guodong, LIU Gongmin, MING Pingjian, et al. CGNS API and FVM in unstructured hybrid grid computational method[J]. Chinese Journal of Computational Physics, 2007, 24(3): 277-281.
点击查看大图
计量
- 文章访问数: 900
- HTML全文浏览量: 81
- PDF下载量: 327
- 被引次数: 0