• ISSN 0258-2724
  • CN 51-1277/U
  • EI Compendex
  • Scopus 收录
  • 全国中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

基于改进局部递归率的脉动风速非平稳度分析方法

李利孝 肖仪清 郑斌 宋丽莉

李利孝, 肖仪清, 郑斌, 宋丽莉. 基于改进局部递归率的脉动风速非平稳度分析方法[J]. 西南交通大学学报, 2016, 29(1): 65-70. doi: 10.3969/j.issn.0258-2724.2016.01.010
引用本文: 李利孝, 肖仪清, 郑斌, 宋丽莉. 基于改进局部递归率的脉动风速非平稳度分析方法[J]. 西南交通大学学报, 2016, 29(1): 65-70. doi: 10.3969/j.issn.0258-2724.2016.01.010
LI Lixiao, XIAO Yiqing, ZHENG Bin, SONG Lili. Method for Analysis of Non-stationarity of Fluctuating Winds Based on Revised Local Recurrence Rate[J]. Journal of Southwest Jiaotong University, 2016, 29(1): 65-70. doi: 10.3969/j.issn.0258-2724.2016.01.010
Citation: LI Lixiao, XIAO Yiqing, ZHENG Bin, SONG Lili. Method for Analysis of Non-stationarity of Fluctuating Winds Based on Revised Local Recurrence Rate[J]. Journal of Southwest Jiaotong University, 2016, 29(1): 65-70. doi: 10.3969/j.issn.0258-2724.2016.01.010

基于改进局部递归率的脉动风速非平稳度分析方法

doi: 10.3969/j.issn.0258-2724.2016.01.010
基金项目: 

国家自然科学基金资助项目(51308168,51278161)

中国博士后科学基金资助项目(2013M531045,2014T70343)

详细信息
    作者简介:

    李利孝(1984-),男,博士,研究方向为结构风工程,电话:18682013431,E-mail:lilixiao1984@gmail.com

Method for Analysis of Non-stationarity of Fluctuating Winds Based on Revised Local Recurrence Rate

  • 摘要: 为了克服递归趋势(recurrence trend, RT)指标对不同信号非平稳度估计存在误判的缺陷,分别采用互信息法和伪临近法确定了递归量化分析的最佳延迟时间和最小嵌入维数,然后在递归量化分析基础上,提出了归一化局部递归率标准差(standard deviation of normalized local recurrence rate, SDNLRR)作为信号非平稳度量化指标.利用该指标,通过递归量化分析方法分析了白噪声信号、正弦信号、调幅信号、线性调频信号4个基本信号和2个实测台风场脉动风速信号的非平稳特性,并与传统的递归趋势指标分析结果进行了对比.研究结果表明:利用SDNLRR指标对6个信号的非平稳度的量化比较准确率达100%,比RT指标的准确率提高了33.33%,消除了RT指标对正弦信号和平稳脉动风速信号的错误估计.

     

  • CHEN J, XU Y L. On modelling of typhoon-induced non-stationary wind speed for tall buildings[J]. The Structural Design of Tall and Special Buildings, 2004, 13(2): 145-163.
    BECK T W, HOUSH T J, WEIR J P, et al. An examination of the runs test, reverse arrangements test, and modified reverse arrangements test for assessing surface EMG signal stationarity[J]. Journal of Neuroscience Methods, 2006, 156(1): 242-248.
    ECKMANN J, KAMPHORST S O, RUELLE D. Recurrence plots of dynamical systems[J]. Europhysics Letters, 1987, 4(9): 973-977.
    TAKENS F. Detecting strange attractors in turbulence[M]. : Springer, 1981: 366-381.
    FRASER A M, SWINNEY H L. Independent coordinates for strange attractors from mutual information[J]. Physical Review A, 1986, 33(2): 1134-1140.
    KENNEL M B, BROWN R, ABARBANEL H D. Determining embedding dimension for phase-space reconstruction using a geometrical construction[J]. Physical Review A, 1992, 45(6): 3403-3411.
    ZBILUT J P, ZALDIVAR-COMENGES J, STROZZI F. Recurrence quantification based Liapunov exponents for monitoring divergence in experimental data[J]. Physics Letters A, 2002, 297(3): 173-181.
    WEBBER C L, ZBILUT J P. Dynamical assessment of physiological systems and states using recurrence plot strategies[J]. Journal of Applied Physiology, 1994, 76(2): 965-973.
    ZBILUT J P, THOMASSON N, WEBBER C L. Recurrence quantification analysis as a tool for nonlinear exploration of nonstationary cardiac signals[J]. Medical Engineering and Physics, 2002, 24(1): 53-60.
    闫润强. 语音信号动力学特性递归分析[D]. 上海:上海交通大学,2006.
    杨栋,任伟新,李丹,等. 基于局部递归率分析的振动信号非平稳评价[J]. 中南大学学报:自然科学版,2013, 44(7): 3024-3032. YANG Dong, REN Weixin, LI Dan, et al. Local recurrence rate analysis based non-stationarity measurement for operational vibration signal [J]. Journal of Central South University: Science and Technology, 2013, 44(7): 3024-3032.
  • 加载中
计量
  • 文章访问数:  795
  • HTML全文浏览量:  52
  • PDF下载量:  291
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-30
  • 刊出日期:  2016-01-25

目录

    /

    返回文章
    返回