Assessment of Rockfall Impact Force by Particle Flow Code Numerical Simulation Based on Discrete Element Model
-
摘要: 为使落石冲击力评定更合理、有效,以离散元模型(DEM)为理论基础,利用颗粒流(PFC)单元法研究垂直下落条件下落石对结构的冲击力,分析了落石高度、重力及回填土厚度对冲击力的影响规律.将PFC数值模拟结果与其他几种落石冲击力计算方法所得结果进行比较,结果表明:落石冲击力与落石高度及重力均呈明显的线性关系,落石冲击力随落石高度线性变化幅度与落石重力有关,而落石冲击力随落石重力线性变化幅度与回填土厚度有关;回填土厚度为0.6 m时的冲击力比无回填土时减小50%~60%,回填土厚度大于2.0 m时,缓冲幅度趋于稳定,说明回填土厚度有一个合理范围,超出时,结构总荷载会增大;离散元颗粒流数值模拟方法通过阻尼设置来模拟空气在落石下落过程中产生的作用,使得在评定大体积落石从较高高度下落时产生的冲击力更加合理.
-
关键词:
- 落石冲击力 /
- 回填土 /
- 离散元模型(DEM) /
- 颗粒流(PFC)
Abstract: To make a reasonable and effective assessment of rockfall impact force, a study on the impact force of falling down rockfall to a structure was carried out by using the method of PFC(particle flow code) based on the theory of DEM(discrete element model). The effects of rockfall height and gravity,and backfill soil thickness on the impact force were analyzed. The results of PFC numerical simulation were compared with those reached by other kinds of calculation methods. The results show that there is an obvious linear relationship between the impact force and the rockfall height or gravity. The linear variation range of the impact force with the changing of the rockfall height relates to the rockfall gravity, while the linear variation range of the impact force with the changing of the rockfall gravity relates to the backfill soil thickness. The impact force reduces by 50%-60% when the backfill soil thickness is 0.6 meter compared with no backfill soil. it tends to be stable when the backfill soil thickness is more than 2 meters, showing that there is a reasonable range of the backfill soil thickness. The total load of structure will increase if the backfill soil thickness exceeds the range. The method of PFC numerical simulation can simulate the effect of air acting on rockfall by setting damping coefficient, which makes the assessment of bigger size rockfall impact force more reasonable.-
Key words:
- impact force of rockfall /
- backfill soil /
- discrete element model /
- particle flow code
-
胡厚田. 崩塌与落石[M]. 北京:中国铁道出版社,1998: 71. 王玉锁,杨国柱. 隧道洞口段危岩落石风险评估[J]. 现代隧道技术,2010,47(6): 33-39. WANG Yusuo, YANG Guozhu. Rockfall risk assessment for a tunnel portal section[J]. Modern Tunnelling Technology, 2010, 47(6): 33-39. 王玉锁. 高速铁路隧道洞口段危岩落石运动轨迹及冲击特性研究[J]. 前言动态,2011(2): 16-21. 杨其新,关宝树. 落石冲击力计算方法的试验研究[J]. 铁道学报,1996,18(1): 101-106. YANG Qixin, GUAN Baoshu. Test and research on calculating method of falling stone impulsive force[J]. Journal of the China Railway Society, 1996, 18(1): 101-106. 交通部第二公路勘察设计研究院. JTJ013-95, 公路路基设计规范[S]. 北京:人民交通出版社,1995. 铁道第二勘测设计院. 铁路工程设计技术手册. 隧道[M]. 2版. 北京:中国铁道出版社,1995: 148-150. KAWAHARA S, MURO T. Effects of dry density and thickness of sandy soil on impact response due to rockfall[J]. Journal of Terramechanics, 2006, 43(3): 329-340. LABIOUSE V,DESCOEUDRES F, MONTANI S. Experimental study of rock sheds impacted by rock blocks[J]. Sruct. Eng. Int.,1996, 3(1): 171-175. 唐建辉. 落石冲击对隧道明洞结构的影响研究[D]. 成都:西南交通大学,2013. ASHAYER P. Application of rigid body impact mechanics and discrete element modeling to rockfall simulation[D]. Toronto: Department of Civil Engineering University of Toronto, 2007. THOENI K, GIACOMINI A, LAMBERT C, et al. A 3D discrete element modelling approach for rockfall analysis with drapery systems[J]. International Journal of Rock Mechanics Mining Sciences, 2014, 68: 107-119. CUNDALL P A, HART R D. Numerical modeling of discontinua[J]. Engineering Computations, 1992, 9(2): 101-113. CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Geotechnique, 1979, 29(1): 47-65. SHIU W J, DONZ? F V. Numerical study of rockfalls on covered galleries by the discrete elements method //Annual Report 2004. Grenoble cedex 9 France:, 2005: 67-82. DONZE F V, RICHEFEU V, MAGNIER S A. Advances in discrete element method applied in soil,rock,concrete mechanics[J]. Electronic Journal of Geotechnical Engineering, 2009, 8: 1-44. 郑智能,张永兴,董强,等. 边坡落石灾害的颗粒流模拟方法[J]. 中国地质灾害与防治学报,2008,19(3): 46-49. ZENG Zhineng, ZHANG Yongxing, DONG Qiang, et al. Visual simulation of rock-fall of slope based on particle flow theory[J]. Journal of Geological Hazard and Control, 2008, 19(3): 46-49. Itasca Consulting Group. Inc. PFC3D (particle flow code in three dimensions) version 4.0 manual[M]. Minneapolis: Itasca Consulting Group Inc., 2008: 1-5 李广信. 高等土力学[M]. 北京:清华大学出版社,2004: 114-130. 王玉锁,王明年,童建军,等. 砂类土体隧道围岩压缩模量的试验研究[J]. 岩土力学,2008,29(6): 1607-1617. WANG Yusuo, WANG Mingnian, TONG Jianjun, et al. Test research on compression modulus of sandy soil tunnel surrounding rock[J]. Rock and Soil Mechanics, 2008, 29(6): 1607-1617. 王玉锁. 砂质土隧道围岩力学参数及分级方法研究[D]. 成都:西南交通大学,2008. 工程地质手册[M]. 4版. 中国建筑工业出版社,2006: 192. 王光钦. 弹性力学[M]. 北京:中国铁道出版社,2008: 131. 黄斌,罗菊,何晓民等. 基床系数的试验方法及合理取值[J]. 四川大学学报:工程科学版,2007,39(增刊): 61- 65. HUANG Bin, LUO Ju, HE Xiaomin, et al. Research on test method and reasonably valuing of coefficient of subgrade reaction[J]. Journal of Sichuan University: Engineering Science Edition, 2007, 39(Sup.): 61-65.
点击查看大图
计量
- 文章访问数: 961
- HTML全文浏览量: 82
- PDF下载量: 545
- 被引次数: 0