Numerical Analysis of Train Impact Load with Finite Element Method
-
摘要: 为获得列车脱轨撞击荷载,分析列车撞击时盾构隧道的动力响应,建立了列车编组的三维撞击有限元模型,探讨了不同列车编组、不同撞击速度和撞击角度下列车近似撞击力时程曲线,分析了列车撞击力最大值和撞击时间与列车撞击速度和角度的关系,并将典型撞击荷载用于分析不同厚度二次衬砌管片衬砌的动力响应.结果表明:列车编组数量一定时,列车斜向撞击力最大值随撞击速度和撞击角度增大而增大;当撞击角度增大到7.5后,撞击力作用时间随撞击速度增大而延长;根据列车撞击力最大值出现时刻不同,可将撞击力时程曲线划分为2类特征曲线,其中第1类特征曲线(撞击瞬间撞击力达到最大)总体上符合高斯多峰拟合公式,可用10个参数近似拟合.二次衬砌厚度增大能有效减小管片衬砌应力、速度、加速度等动力响应以及拉、压损伤区域.Abstract: In order to obtain the train impact load on shield tunnel to investigate the dynamic responses of shield tunnel segment under train impact load, a 3D numerical analysis model for train formation was established to obtain the time-history curves of train impact force at different impact velocities, train formations and oblique impact angles. The maximum train impact force and impact duration as functions of impact velocity and impact angle were researched. Based on the representative time-history curves, the dynamic responses of shield tunnel with different thickness double lining caused by train impact load were investigated. The research result shows that when train formation is certain, the maximum train impact force increases with the increases of impact velocity and impact angle; when impact angle is larger than 7.5, impact duration extends with the increase of impact velocity. From different times at which the maximum train impact force appears, the time-history curves of train impact force can be divided into two kinds of characteristic curve, and the first kind of characteristic curve with the maximum impact force appearing at the impact moment is in accordance with the Gauss multiple peak fitting formula, and 10 parameters can be used to achieve its approximate fitting. To increase secondary lining thickness can effectively reduce the dynamic responses of external segment lining under train impact load such as stress, velocity and acceleration as well as tension and compression damage zones.
-
KIRKPATRICK S W, SCHROEDER M. Evaluation of passenger rail vehicle crashworthiness[J]. International Journal of Crashworthiness, 2001, 6(1): 95-106. KIRKPATRICK S W, MACNEILL R A. Development of computer model for prediction of collision response of a railroad passengers car[C]//Proceeding of Joint Rail Conference. Washington D. C.: IEEE, 2002: 9-16. TYRELL D, JACOBSEN K, PARENT D. Preparations for a train-to-train impact test of crash-energy management passenger rail equipment[C]//Proceedings of Joint Rail Conference. Pueblo, Colorado: IEEE, 2005: 107-116. SUTTON A. The development of rail vehicle crash- worthiness[J]. Journal of Rail and Rapid Transit, 2002, 216(2): 97-108. 姚松,田红旗. 车辆吸能部件的薄壁结构碰撞研究[J]. 中国铁道科学,2001,22(2): 55-60. YAO Song, TIAN Hongqi. Crash research on thin-shelled structure as vehicle energy-absorbing components[J]. China Railway Science, 2001, 22(2): 55-60. 高广军,田红旗,姚松,等. 列车多体耦合撞击分析[J]. 中国铁道科学,2005,26(4): 93-97. GAO Guangjun, TIAN Hongqi, YAO Song, et al. Multi-car coupling collision analysis[J]. China Railway Science, 2005, 26(4): 93-97. 晏启祥,李彬,张蒙,等. 200 km/h列车脱轨撞击作用下盾构隧道二次衬砌对管片衬砌的防护效果[J]. 中国铁道科学,2014,35(6): 70-78. YAN Qixiang, LI Bin, ZHANG Meng, et al. Protective effect of secondary lining of shield tunnel on segment lining under derailment impact at the speed of 200 km/h[J]. China Railway Science, 2014, 35(6): 70-78. 张蒙. 列车撞击荷载下水下盾构隧道的动力响应特性研究[D]. 成都:西南交通大学土木工程学院,2013. 向俊,龚凯,毛建红,等. 高速列车运行安全性与桥梁防撞墙受力分析[J]. 铁道学报,2011,33(12): 83-87. XIANG Jun, GONG Kai, MIAO Jianhong, et al. Analysis on the running safety of high-speed train and the force of bridge collision-proof wall[J]. Journal of the China Railway Society, 2011, 33(12): 83-87. 吴彪,王吉英. 从桥梁翼缘板的横向防撞强度验算谈边梁的横向配筋[J]. 中国市政工程,2004(2): 19-20. WU Biao, WANG Jiying. On transverse reinforcement based on computation checking of transverse crash strength of bridge flange slab[J]. China Municipal Engineering, 2004(2): 19-20. 王怀东,陈秉智,陈一萍,等. 城轨列车虚拟碰撞研究[J]. 大连交通大学学报,2011,32(3): 15-19. WANG Huaidong, CHEN Bingzhi, CHEN Yiping, et al. Study of urban railway vehicle virtual collision simulation[J]. Journal of Dalian Jiaotong University, 2011, 32(3): 15-19. 黄胜,陈卫忠,杨建平,等. 地下工程地震动力响应及抗震研究[J]. 岩石力学与工程学报,2009,28(3): 483-490. HUANG Sheng, CHEN Weizhong, YANG Jianping, et al. Research on earthquake-induced dynamic responses and aseismic measures for underground engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(3): 483-490. 王娜娜,马卫华. 自动车钩的弹簧刚度和阻尼系数对列车纵向动力学的影响[J]. 内燃机车,2010(9): 1-3. WANG Nana, MA Weihua. Influence of spring stiffness and damping coefficient of automatic coupler on the longitudinal dynamics of train[J]. Diesel Locomotives, 2010(9): 1-3. LI Xiaoge, ZHANG Jianhua, LIU Zhaoqing, et al. Determination of critical micelle concentration of binary surfactant mixtures using UV-VIS spectrophotometry and Gaussian fitting method[J]. Global Journal of Physical Chemistry, 2011, 2(1): 34-38. NEDJAR B. Elastoplastic-damage modelling including the gradient of damage: formulation and computational aspects[J]. International Journal of Solids and Structures, 2001, 38(30/31): 5412-5451.
点击查看大图
计量
- 文章访问数: 1329
- HTML全文浏览量: 80
- PDF下载量: 746
- 被引次数: 0