A New Multi-kernel Discriminant Analysis
-
摘要: 为了给模式分类和维度约简提供有效的手段,在综合L1-MKDA和L2-MKDA两种多核KDA优点的基础上,提出一种以预定内核函数的线性组合,并结合混合范数正则化函数实现核权重的稀疏性和非稀疏性平衡的新型弹性多核判别分析方法(semi-infinite-programming-based flexible multi-kernel discriminant analysis, S-FMKDA).该方法用半无限规划方法求解弹性多核判别分析算法,并通过混合正则化实现核的自学习.在不同数据集上的实验结果表明:S-FMKDA比目前常见的KDA、KDAP、KDAG、L1-MKDA、L2-MKDA、UMKDA核判别分析方法的精度提高5%.Abstract: In order to provide effective means for pattern classification and dimension reduction and stem from the advantages of two kinds of multi-kernel namely L1-MKDA and L2-MKDA, a new type of semi-infinite-programming-based flexible multi kernel discriminant analysis method was proposed, which is based on a linear combination of the predefined kernel function, and can utilize mixed norm regularization function to balance the sparsity of kernel weights. It applys semi-infinite programming algorithm to solve the elastic multi-core discriminant analysis, and achieves nuclear self-learning through the mixed regularization. Finally, the experimental results for different data sets demonstrate that the accuracy of the proposed algorithm is 5% better than those of KDA、KDAP、KDAG、L1-MKDA、L2-MKDA and UMKDA.
-
Key words:
- multi-kernel /
- discriminant analysis /
- norm /
- regularization /
- semi-infinite /
- programming /
- sparsity
-
SCHLKOPF B, SMOLA A J. Learning with kernels: support vector machines, regularization, optimization, and beyond[M]. : MIT Press, 2002: 25-60. SHAWE T J, CRISTIANINI N. Kernel methods for pattern analysis[M]. New York: Cambridge University Press, 2004: 286-427. LANCKRIET G R G, CRISTIANINI N, BARTLETT P, et al. Learning the kernel matrix with semidefinite programming[J]. The Journal of Machine Learning Research, 2004, 5: 27-72. XU Y, ZHANG D, JIN Z, et al. A fast kernel-based nonlinear discriminant analysis for multi-class problems[J]. Pattern Recognition, 2006, 39(6): 1026-1033. SZILGYI S M, SZILGYI L. A fast hierarchical clustering algorithm for large-scale protein sequence data sets[J]. Computers in Biology and Medicine, 2014, 48(1): 94-101. MIKA S, RTSCH G, MVLLER K R. A mathematical programming approach to the kernel fisher algorithm[C]//Advances in Neural Information Processing Systems. Denver:, 2001: 591-597. KIM S J, MAGNANI A, BOYD S. Optimal kernel selection in kernel fisher discriminant analysis[C]//Proceedings of the 23rd International Conference on Machine Learning. New York: ACM, 2006: 465-472. YE J, JI S, CHEN J. Multi-class discriminant kernel learning via convex programming[J]. The Journal of Machine Learning Research, 2008, 9: 719-758. KHEMCHANDANI R, CHANDRA S. Learning the optimal kernel for Fisher discriminant analysis via second order cone programming[J]. European Journal of Operational Research, 2010, 203(3): 692-697. BACH F R, LANCKRIET G R G, JORDAN M I. Multiple kernel learning, conic duality, and the SMO algorithm[C]//Proceedings of the 21st International Conference on Machine Learning. Banff:, 2004: 41-48. SONNENBURG S, RTSCH G, SCHFER C, et al. Large scale multiple kernel learning[J]. The Journal of Machine Learning Research, 2006, 7: 1531-1565. 刘金,金炜东. 基于类间和类内方差的快速二维阈值分割法[J]. 西南交通大学学报,2014,49(5): 913-919. LIU Jin, JIN Weidong. Fast method for 2D threshold segmentation algorithm based on inter-class and intra-class variances[J]. Journal of Southwest Jiaotong University, 2014, 49(5): 913-919. 杨本娟,刘本永. 基于核判别分析与证据理论的图像伪作分层融合检测[J]. 科学技术与工程,2014,32(1): 63-67. YANG Benjuan, LIU Benyong. Image forgery detection based on kernel discriminant analysis and evidence theory[J]. Science Technology and Engineering, 2014, 32(1): 63-67. LIANG Z, LI Y. Multiple kernels for generalised discriminant analysis[J]. IET Computer Vision, 2010, 4(2): 117-128. LIN Y Y, LIU T L, FUH C S. Multiple kernel learning for dimensionality reduction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(6): 1147-1160. OJALA T, PIETIKAINEN M, MAENPAA T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 24(7): 971-987. SHANG Fanhua, JIAO L C, LIU Yuanyuan, et al. Semi-supervised learning with nuclear norm regularization[J]. Pattern Recognition, 2013, 46(8): 2323-2336. GOPI V P, PALANISAMY P, WAHID K A, et al. Multiple regularization based MRI reconstruction[J]. Signal Processing, 2014, 103: 103-113. BUCAK S S, JIN R, JAIN A K. Multiple kernel learning for visual object recognition: a review[J]. Pattern Analysis and Machine Intelligence, 2014, 36(7): 1354-1369. 贾真,何大可,尹红风,等. 基于无监督学习的部分-整体关系获取[J]. 西南交通大学学报,2014,49(4): 590-596. JIA Zhen, HE Dake, YIN Hongfen, et al. Acquisition of part-whole relations based on unsupervised learning[J]. Journal of Southwest Jiaotong University, 2014, 49(4): 590-596. YAN F, KITTLER J, MIKOLAJCZYK K, et al. Non-sparse multiple kernel Fisher discriminant analysis[J]. The Journal of Machine Learning Research, 2012, 13(1): 607-642. YAN F, MIKOLAJCZYK K, BARNARD M, et al. Lp norm multiple kernel Fisher discriminant analysis for object and image categorisation[C]//2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). San Francisco: IEEE, 2010: 3626-3632. YANG H, XU Z, YE J, et al. Efficient sparse generalized multiple kernel learning[J]. IEEE Transactions on Neural Networks, 2011, 22(3): 433-446. SUN D, ZHANG D. A new discriminant principal component analysis method with partial supervision[J]. Neural Processing Letters, 2009, 30(2): 103-112. CHEN X, YANG J, LIANG J. Optimal locality regularized least squares support vector machine via alternating optimization[J]. Neural Processing Letters, 2011, 33(3): 301-315.
点击查看大图
计量
- 文章访问数: 646
- HTML全文浏览量: 44
- PDF下载量: 241
- 被引次数: 0