Characteristics of Ride Comfort and Torsion Elimination of Four-Corner Interconnected Air Suspension System
-
摘要: 为提高车辆在不平路面上的行驶平顺性,减小车身所受扭转载荷,提出了一种四角互联空气悬架系统.基于工程热力学和车辆动力学理论,构建了带四角互联空气悬架的整车动力学模型.通过搭建试验台架,验证了所建模型的准确性,并在Matlab/Simulink中进行了仿真分析.研究结果表明:当车辆以20 km/h的速度行驶在对扭路面时,与传统空气悬架相比,四角互联空气悬架可使车身加速度、侧倾角和车轮动载荷分别改善22.5%,24.2%和16.3%, 并消除27.8%的车身扭转载荷,但悬架动行程增大20.6%;连接管路内径在0~10 mm范围增大,互联效果越显著,当车速在10~60 km/h范围时,四角互联空气悬架能有效提升车辆隔振性能,且车速在40 km/h以下消扭效果更加明显.Abstract: In order to improve the ride comfort and decrease the vehicle body torsion load on uneven roads, a four-corner interconnected air suspension system was proposed. Based on the engineering thermodynamics and the vehicle dynamics theory, a vehicle dynamic model equipped with the four-corner interconnected air suspension was established. Then, the model accuracy was validated by a bench test, and the full vehicle model was simulated under the Matlab/Simulink environment. The results show that when a vehicle equipped with the four interconnected air suspension runs at a low speed on a twisting road, compared to that equipped with the traditional air suspension, the vehicle body acceleration, roll angle and wheel load reduce 22.5%, 24.2% and 16.3%, respectively; the vehicle body torsion load decreases 27.8%; but the suspension dynamic stroke increases 20.6%. Moreover, the interconnection brings about more benefits as the pipe diameter increases from 0 to 10 mm. The four-corner interconnected air suspension can effectively improve the ride comfort when the vehicle speed is in the range of 10-60 km/h, and the torsion elimination characteristics will be more obvious when the speed is less than 40 km/h.
-
Key words:
- air suspension /
- four-corner interconnection /
- ride comfort /
- torsion elimination
-
郭孔辉,陈禹行,庄晔,等. 油气耦连悬架系统的建模与仿真研究[J]. 湖南大学学报:自然科学版,2011,38(3): 29-33. GUO Konghui, CHEN Yuxing, ZHUANG Ye, et al. Modeling and simulation study of hydro-pneumatic interconnected suspension system[J]. Journal of Hunan University: Natural Sciences, 2011, 38(3): 29-33. 童伟,郭孔辉,黄向东. 整体耦合式消扭悬架操纵稳定性试验仿真研究[J]. 机床与液压,2008,36(11): 137-138+141. TONG Wei, GUO Konghui, HUANG Xiangdong. Simulation research on handling and stability of global-coupled torsion-eliminated suspension[J]. Machine Tool Hydraulics, 2008, 36(11): 137-138+141. 童伟,郭孔辉,黄向东. 新型消扭悬架车辆的消扭能力及接地性仿真[J]. 华南理工大学学报:自然科学版,2009,37(7): 69-73. TONG Wei, GUO Konghui, HUANG Xiangdong. Simulation of abilities of torsion elimination and ground adhesion for vehicle with new-type torsion-eliminated suspension[J]. Journal of South China University of Technology: Natural Science Edition, 2009, 37(7): 69-73. 郭孔辉,卢荡,宋杰,等. 油气消扭悬架的试验与仿真[J]. 吉林大学学报:工学版,2008,33(4): 753-757. GUO Konghui, LU Dang, SONG Jie, et al. Test and simulation on hydro-pneumatic torsion eliminating suspension[J]. Journal of Jilin University: Engineering and Technology Edition, 2008, 33(4): 753-757. 郭孔辉,卢荡,吴海东. 消除多余约束全局耦合油气悬架系统的研究[J]. 汽车技术,2007,5: 1-2,33. GUO Konghui, LU Dang,WU Haidong. Research on the global-coupling hydro-pneumatic suspension by removing redundant restrictions[J]. Automobile Technology, 2007, 5: 1-2, 33. 汪若尘,吴涛,孟祥鹏,等. 液压互联消扭悬架系统研究[J]. 农业机械学报,2015,46(2): 288-293. WANG Ruochen, WU Tao, MENG Xiangpeng, et al. Interconnected hydraulic torsion elimination suspension system[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(2): 288-293. DAVIS L, BUNKER J. Heavy vehicle suspension testing and analysis: dynamic load sharing[R]. : Department of Main Roads and Queensland University of Technology, 2009. WOLF-MONHEIM F, SCHUMACHER M, MICHAEL F. Interlinked air suspension systems[J]. ATZ Auto Technology, 2009, 9(3): 58-61. KAT C. Interconnected air spring model[J]. Mathematical and Computer Modeling of Dynamical Systems, 2009, 15(4): 353-370. DAVIS L, BUNKER J. Altering heavy vehicle air suspension dynamic forces by modifying air lines[J]. International Journal of Heavy Vehicle Systems, 2011, 18(1): 1-17. DAVIS L, BUNKER J. Dynamic load sharing in heavy vehicle suspensions[J]. Modern Traffic and Transportation Engineering Research, 2014, 3(1): 1-6. CHEN Yikai, HE Jie, KING M, et al. Effect of driving conditions and suspension parameters on dynamic load-sharing of longitudinal-connected air suspensions[J]. Science China Technological Sciences, 2013, 56(3): 666-676. CHEN Yikai, HE Jie, KING M, et al. Model development and dynamic load-sharing analysis of longitudinal-connected air suspensions[J]. Strojnikivestnik-Journal of Mechanical Engineering, 2013, 59(1): 14-24. 李仲兴,崔振,徐兴,等. 互联式空气悬架动态特性试验研究[J]. 科学技术与工程,2014,14(14): 82-86. LI Zhongxing, CUI Zhen, XU Xing, et al. Experimental study on the dynamic performance of pneumatically interlinked air suspension[J]. Science Technology and Engineering, 2014, 14(14): 82-86. 崔振. 半主动横向互联空气悬架的特性及其分层控制研究[D]. 镇江:江苏大学汽车与交通工程学院,2014. 李芾,付茂海,黄运华. 空气弹簧动力学特性参数分析[J]. 西南交通大学学报,2003,38(3): 276-281. LI Fu, FU Maohai, HUANG Yunhua. Analysis of dynamic characteristic parameter of air spring[J]. Journal of Southwest Jiaotong University, 2003, 38(3): 276-281. 李美. 带附加气室空气弹簧系统动态特性机理的研究[D]. 镇江:江苏大学汽车与交通工程学院,2012. 贾爱芹,陈建军,曹鸿钧. 随机结构参数车辆在随机激励下的振动响应[J]. 西南交通大学学报,2014,49(3): 438-443. JIA Aiqin, Chen Jianjun, CAO Hongjun. Vibration response of vehicle with stochastic structural parameters under random excitation[J]. Journal of Southwest Jiaotong University, 2014, 49(3): 438-443.
点击查看大图
计量
- 文章访问数: 662
- HTML全文浏览量: 69
- PDF下载量: 356
- 被引次数: 0