Cable-Beam Vibration Characteristics of Cable-Stayed Bridge under External Excitations
-
摘要: 为了研究大跨度斜拉桥在外激励作用下发生的索-梁相关振动,基于非线性振动理论建立了拉索发生大幅度非线性振动的理论方程,开发了有限元索动力单元;建立了某大跨度斜拉桥全桥有限元模型,在此基础上,使用索动力单元模拟斜拉索;最后,以一座具有代表性的大跨度公路斜拉桥为例,研究了在不同工况的外激励作用下斜拉桥发生索-梁相关振动的特性.研究结果表明:在斜拉桥全桥尺度下研究索-梁相关振动更为合理;斜拉桥的索-梁相关振动是一个能量传递过程;在外激励作用下,拉索 1:1 主共振更容易发生,2:1 参数共振相对不容易发生;靠近桥塔位置的较短拉索不容易发生较大幅度的振动.Abstract: To understand the effect of external excitations on the cable-beam vibration of large-span cable-stayed bridge, firstly, the theoretical equation for the large-amplitude cable vibration was built, and based on nonlinear vibration theory, the dynamic cable element was developed using finite element method(FEM). Secondly, a large cable-stayed bridge FEM modal was built, and the cables of the bridge were simulated by cable dynamic element. Finally, a typical cable-stayed bridge was used as an example to investigate the cable-beam vibration characteristics under different external excitations. The results indicate that it is more reasonable to study the cable-beam vibration on global bridge scale. In cable-beam vibration, there is an energy transfer process. Under external excitations, 1:1 main resonance more easily occurs than 2:1 parametric resonance. The shorter cables close to the towers in cable-stayed bridge are difficult to experience large-amplitude vibration. parametric resonance, main resonance of cable occur more easily. The shorter cables which near by the towers in cable-stayed bridge are difficult to occur large amplitude vibration.
-
Key words:
- cable-stayed bridge /
- stayed cable /
- nonlinear /
- cable-beam vibration /
- external excitation /
- finite element method
-
亢战,钟万勰. 斜拉桥参数共振问题的数值研究[J]. 土木工程学报,1998,31(4): 14-22. KANG Zhan, ZHONG Wanxie. Numerical study on parametric resonance of cable in cable-stayed bridge[J]. China Civil Engineering Journal, 1998, 31(4): 4-22. 汪至刚,孙炳楠. 斜拉桥参数振动引起的拉索大幅振动[J]. 工程力学,2001,18(1): 103-109. WANG Zhigang, SUN Bingnan. Cable vibration for cable-stayed bridge by parametric response[J]. Engineering Mechanics, 2001, 18(1): 103-109. 陈水生. 大跨度斜拉桥拉索的振动及被动、半主动控制[D]. 杭州:浙江大学建筑工程学院结构工程系,2002. 谭长建,祝兵. 大跨度斜拉桥索与桥面耦合振动分析[J]. 西南交通大学学报,2007,42(6): 726-732. TAN Changjian, ZHU Bing. Coupled vibration analysis of bridge deck and cable of long-span cable-stayed bridge[J]. Journal of Southwest Jiaotong University, 2007, 42(6): 726-732. 陈丕华,王修勇,陈政清,等. 斜拉索面内参数振动的理论和试验研究[J]. 振动与冲击,2010,29(2): 50-55. CHEN Pihua, WANG Xiuyong, CHEN Zhengqing, et al. Theoretical and experim ental study on planar param etric oscillations in a stayed-cable[J]. Journal of Vibration and Shock, 2010, 29(2): 50-55. CALCADA R, CUNHA A D. Analysis of traffic-induced vibrations in a cable-stayed bridge: part Ⅰ: experimental assessment[J]. ASCE Journal of Bridge Engineering, 2012, 10(4): 370-385. CALCADA R, CUNHA A D. Analysis of traffic-induced vibrations in a cable-stayed bridge: part Ⅱ: Numerical modeling and stochastic simulation[J]. ASCE Journal of Bridge Engineering, 2012, 10(4): 390-410. Elsa de SCaetano. Cable vibrations in cable-stayed bridges[M]. Zurich: IABSE, 2011: 32-55. 王涛,沈锐利,李洪. 斜拉桥索-梁相关振动概念与研究方法初探[J]. 振动与冲击,2013,32(20): 29-34. WANG Tao, SHEN Ruili, LI Hong. Primary investigation on the concept and method of cable-beam vibration in cable-stayed bridge[J]. Journal of Vibration and Shock, 2013, 32(20): 29-34. 王涛,沈锐利. 考虑抗弯刚度的缆索线形研究[J]. 建筑科学与工程学报,2010,27(3): 35-40. WANG Tao, SHEN Ruili. Research on suspended curve-shape of cables considering flexural rigidity[J]. Journal of Architecture and Civil Engineering, 2010, 27(3): 35-40. 徐荣桥. 结构分析的有限元法与MATLAB程序设计[M]. 北京:人民交通出版社,2006: 16-58.
点击查看大图
计量
- 文章访问数: 780
- HTML全文浏览量: 81
- PDF下载量: 274
- 被引次数: 0