Experimental Study and Prediction Model for Concrete Creep in Ambient Environment
-
摘要: 为准确预测实际工程结构混凝土徐变的发展规律,在反映恒温、恒湿条件下混凝土徐变性能的基准徐变系数基础上,引入温度、湿度徐变系数,建立了预测实际环境温、湿度条件下混凝土徐变的组合徐变模型.借鉴徐变计算理论,提出了由环境温度变化引起的混凝土附加徐变的实用计算方法.研究结果表明:自然环境中随时间变化的温、湿度导致现行徐变模型的预测结果与实际的徐变变形存在显著差异,其引起的混凝土附加徐变随季节更替而产生周期性增减交替变化;组合徐变模型给出的结果与试验结果最大相对偏差为6%,与试验结果最为接近的现行徐变模型相比,减小了7%.Abstract: In order to accurately predict structural concrete creep, utilizing the benchmark creep coefficient under constant temperature and humidity, temperature creep coefficient and moisture creep coefficient were introduced to develop the combination creep model for concrete exposed to the actual ambient environment. Based on creep theory, a practical method to calculate additional creep caused by variable ambient temperature was provided. The results indicate that due to the time-varying ambient temperature and relative humidity, there is a marked difference between the actual creep and model predicted creep. The additional creep is subject to seasonal cycle variation. The relative deviation between the experimental and calculated results of combination creep model is 6%, which is reduced by 7% in contrast to the closest results by the current creep model.
-
黄国兴,惠荣炎,王秀军. 混凝土徐变与收缩[M]. 北京:中国电力出版社,2011: 1-118. MARU S, ASFAW M, NAGPAL A K. Consistent procedure for creep and shrinkage effects in RC frames[J]. Journal of Structural Engineering, 2001, 127(7): 726-732. 李传习,夏桂云. 大跨度桥梁结构计算理论[M]. 北京:人民交通出版社,2002: 5-20. 邹立群. 混凝土收缩徐变引起大跨度连续刚构桥长期下挠分析[D]. 北京:北京交通大学,2010. 徐锦. 连续梁桥的混凝土收缩徐变试验研究及效应分析[D]. 重庆:重庆交通大学,2008. 汪剑,方志. 大跨预应力混凝土箱梁桥收缩徐变效应测试与分析[J]. 土木工程学报,2008,41(1): 70-81. WANG Jian, FANG Zhi. Analysis and field measurement of concrete box girder bridges for shrinkage and creep effects[J]. China Civil Engineering Journal, 2008, 41(1): 70-81. SAKATA K, AYANO T. Effect of ambient temperature and humidity on creep and shrinkage of concrete[C]//Adam Neville Symposium: Creep and Shrinkage-Structural Design Effects. Farmington Hills: American Concrete Institute, 2000: 215-235. BAZANT Z P, WANG T S. Practical prediction of cyclic humidity effect in creep and shrinkage of concrete[J]. Materials and Structures, 1985, 18(4): 247-252. VANDEWALLE L. Concrete creep and shrinkage at cyclic ambient conditions[J]. Cement Concrete Composites, 2000, 22: 201-208. COMITE EURO-INTERNATIONAL DU BETON. CEB-FIP Model Code 1990: Design Code[S]. London: Thomas Telford Services Ltd., 1993: 53-57. ACI COMMITTEE 209. ACI 209R-92 prediction of creep, shrinkage and temperature effects in concrete structures[S]. Farmington Hills: American Concrete Institute, 1997: 3-9. BAZANT Z P, MURPHY W P. Creep and shrinkage prediction model for analysis and design of concrete structures model B3*[J]. Materials and Structures, 1995, 28: 357-365. BAZANT Z P, BAWEJA S. Short form of creep and shrinkage prediction model B3 for structures of medium sensitivity[J]. Materials and Structures, 1996, 29: 587-593. BAZANT Z P, NOVAK D. Sensitivity study of BP-KX and B3 creep and shrinkage models[J]. Materials and Structures, 1996, 29: 500-505. GARDNER N J, LOCKMAN M J. Design provisions for drying shrinkage and creep of normal-strength concrete[J]. ACI Materials Journal, 2001, 98(2): 159-167.
点击查看大图
计量
- 文章访问数: 844
- HTML全文浏览量: 79
- PDF下载量: 427
- 被引次数: 0