Influence of Local Stress Variance on Elastic Stability of Compression Bar
-
摘要: 为研究在不同形式荷载作用下局部应力差异对加载端自由压杆弹性稳定的影响,基于有限元理论探讨了在点加载及面加载情况下压杆的弹性稳定性能.以平面梁单元为例,通过对荷载作用端附近单元的几何刚度矩阵进行调整,模拟了加载形式对加载区局部应力的影响,并通过特征值求解,研究了其对压杆弹性稳定的影响.研究结果表明:加载形式的不同会显著影响加载端自由压杆的稳定临界载荷,但不会影响加载端受约束方向上的稳定临界载荷;长细比介于50~280范围内的一端固定、一端自由的受压圆柱,面加载情况下的弹性稳定临界载荷约为点加载情况下弹性稳定临界载荷的2.14倍.Abstract: To discuss how the elastic stability of compression bar is affected by local stress variances with different loading patterns, the finite element (FE) method was adopted to study the stability performance of compression under the single-point loading and surface loading. A 2-D plane beam was taken as an example and the influence of loading pattern on the local stress variance in the beam element was studied by adjusting the elements near the loading end in the geometric stiffness matrix, and eigenvalue equation was then solved. The results show that different loading patterns notably affect the critical elastic stability loads of compression bar with one end free, but has less effect on the critical loads for the constrained direction of loading end. For the compression bar with one end fixed and one end free and the slenderness ratio from 50 to 280, the critical load under surface loading is 2.14 times higher than that under singe-point loading.
-
张然,武建勋. 圣维南原理的一般性能量衰减指标[J]. 工程力学,2008,25(3): 14-17. ZHANG Ran, WU Jianxun.Common energy decay indices of Saint-Venant's Principle[J]. Engineering Mechanics, 2008, 25(3): 14-17. 宋少云,尹芳. 有限元网格划分中的圣维南原理及其应用[J]. 机械设计与制造,2012(8): 63-65. SONG Shaoyun, YIN Fang. Saint-Venant's Principle of meshing in finite element method and its application[J]. Machinery Design Manufacture, 2012(8): 63-65. 周萌,宁晓旭,聂建国. 混合梁斜拉桥钢混结合区4-D多尺度有限元分析[J]. 清华大学学报:自然科学版,2014,54(10): 1321-1326. ZHOU Meng, NING Xiaoxu, NIE Jianguo. 4-D multiscale finite element analysis of the hybrid zone foe cable-stayed bridges with steel-concrete hybrid girders[J]. Journal of Tsinghua University: Science and Technology, 2014, 54(10): 1321-1326. 班慧勇,施刚,邢海军,等. Q420等边角钢轴压杆稳定性能研究(Ⅰ):残余应力的试验研究[J]. 土木工程学报,2010,43(7): 14-21. BAN Huiyong, SHI Gang, XING Haijun, et al. Stability of Q420 high strength steel equal-leg angle members under axial compression(Ⅰ):Experimental study on the residual stress[J]. China Civil Engineering Journal, 2010, 43(7): 14-21. 谌磊,彭奕亮,杨俊芬,等. Q690高强钢管轴压承载力试验研究[J]. 武汉大学学报:工学版,2013,46(增刊): 90-96. CHEN Lei, PENG Yiliang, YANG Junfen, et al. Experimental study of axial bearing capacity of Q690 high-strength steel tubes[J]. Engineering Journal of Wuhan University, 2013, 46(Sup.): 90-96. 张明. 局部削弱压杆的稳定性实验研究[J]. 实验力学,2009,24(4): 374-378. ZHANG Ming. Experimental research on buckling of locally weakened columns[J]. Journal of Experimental Mechanics, 2009, 24(4): 374-378. 杨绿峰,吴文龙,余波. 基于弹性模量缩减法的随机极限承载力分析[J]. 西南交通大学学报,2013,48(6): 1016-1023. YANG Lufeng, WU Wenlong, YU Bo. Stochastic ultimate bearing capacity analysis based on elastic modulus reduction method[J]. Journal of Southwest Jiaotong University, 2013, 48(6): 1016-1023. 张壮南,张耀春. 残余应力对单轴对称工字梁稳定承载力的影响[J]. 哈尔滨工业大学学报,2007,39(12): 1864-1868. ZHANG Zhuangnan, ZHANG Yaochun. Effects of welding residual stresses on the stability capacity of the monosymmetric I-beams[J]. Journal of Harbin Institute of Technology, 2007, 39(12): 1864-1868. 郭盛. 冷弯残余应力分布及其影响下的轴压构件整体稳定性研究[D]. 武汉:武汉大学,2004. 彭崇梅,张启伟,李元兵. 焊接残余应力对钢桁斜拉桥整体稳定性的影响[J]. 长安大学学报:自然科学版,2011,31(6): 36-42. PENG Chongmei, ZHANG Qiwei,LI Yuanbing.Influence of welding residual stress on stability of steel truss cable-stayed bridge[J]. Journal of Chang'an University: Natural Science Edition, 2011, 31(6): 36-42. 陈明,张秋华,严勇,等. 测量压杆临界压力的理论与实验[J]. 力学与实践,2007,29(1): 74-76. 施刚,班慧勇,BIJLAARD F S K,等. 端部带约束的超高强度钢材受压构件整体稳定受力性能[J]. 土木工程学报,2011,44(10): 17-25. SHI Gang, BAN Huiyong, BIJLAARD F S K, et al. Experimental study and finite element analysis on the overall buckling behavior of ultra-high strength steel compression members with end restraints[J]. China Civil Engineering Journal, 2011, 44(10): 17-25. 于桂杰,皇甫光. 压杆稳定的实验方法[J]. 实验技术与管理,2006,23(11): 33-35. YU Guijie, HUANG Fuguang. Test method about buckling of column[J]. Experimental Technology and Management, 2006, 23(11): 33-35. 李国豪. 桥梁结构稳定与振动[M]. 修订版. 北京:中国铁道出版社,2010: 6-10. 董冠文,李宗义,赵彦军,等. 压杆稳定临界力欧拉公式统一推导[J]. 武汉工程大学学报,2012,34(12): 71-74. DONG Guanwen, LI Zongyi, ZHAO Yanjun, et al. Unified deduction of pressure lever stability critical force Euler formula[J]. Journal of Wuhan Institute of Technology, 2012, 34(12): 71-74. 朱伯芳. 有限单元法原理及应用[M]. 3版.北京: 中国水利水电出版社,知识产权出版社,2009: 383-390.
点击查看大图
计量
- 文章访问数: 777
- HTML全文浏览量: 61
- PDF下载量: 329
- 被引次数: 0