Calculation Model for Axial Rigidity of CHS Y-Type Joints
-
摘要: 为获得Y型圆钢管相贯节点轴向刚度实用计算公式,基于环向模型和节点局部变形与轴向刚度的关系,建立了半圆拱模型,并导出了节点轴向刚度的理论公式;运用泰勒级数等数学手段,将理论公式中的复杂函数简化为能反映自变量间相互影响的指数函数与幂函数的乘积,并根据单参数分析结果忽略次要因素支主管壁厚比,获得了Y型节点刚度的简化计算式.研究结果表明:节点刚度与材料弹性模量、支主管平面内夹角正弦平方的倒数和主管直径成正比;支主管直径比和主管径厚比对节点刚度的影响较大;简化公式计算的刚度值与有限元计算结果和已有试验数据的相对误差基本小于8%.
-
关键词:
- Y型圆钢管相贯节点 /
- 半圆拱模型 /
- 参数相互影响 /
- 非线性多元回归 /
- 节点轴向刚度计算公式
Abstract: In order to establish a practical parameterization calculation formula for the axial rigidity of a circular hollow section (CHS) Y-type joint, a semicircular arch model for Y-type joint rigidity was developed based on the round-direction model and the relationship between local deformation of a joint and its axial rigidity, and a theoretical formula for the axial rigidity was established. With the help of the Taylor series, the complex theoretical formula was simplified to the product of an exponential function and a power function embodying the interaction effect between independent variables. In addition, the secondary influence factor, brace-to-chord thickness ratio, was omitted in the light of the single-parameter analysis result from finite element analyses (FEA). As a result, a practical formula for the axial rigidity of a Y-type joint was obtained through a multiple nonlinear regression analysis. The results show that the axial rigidity is directly proportional to elastic modulus of steel, reciprocal of sine-square of the angle between branch and chord in plane and chord diameter, brace-to-chord diameter ratio and chord diameter-to-thickness ratio have significant effects on the axial rigidity, and relative errors between axial rigidity values obtained by the practical formula and the FEA and existing test results are basically less than 8%. -
北京钢铁设计研究总院. GB 500172003 钢结构设计规范及条文说明 中冶建筑研究总院有限公司,同济大学. CECS2802010 管结构技术规程 [S]. 北京:中国计划出版社,2003. CHEN Yiyi, WANG Wei. Flexural behavior and resistance of uni-planar KK and X tubular joints [S]. 北京:中国计划出版社,2011. 王伟. 圆钢管相贯节点非刚性性能及对结构整体行为的影响效应 郭兵,雷淑忠. 梁柱节点刚度对无支撑钢框架性能的影响 [J]. Steel Composite Structures, 2003, 3(2): 123-140. 李秀梅,秦荣. 半刚性连接钢框架二阶弹塑性稳定分析的QR法 贾良玖. 单层网壳节点分类标准 FESSLER H, MOCKFORD P B, WEBSTER J J. Parametric equations for the flexibility matrices of single brace tubular joints in offshore structures [D]. 上海:同济大学建筑工程系,2005. FESSLER H, MOCKFORD P B, WEBSTER J J. Parametric equations for the flexibility matrices of multi-brace tubular joints in offshore structures [J]. 山东建筑大学学报,2010,25(3): 231-235. GUO Bing, LEI Shuzhong. Effects of connection stiffness on the behavior of unbraced steel frames 王啸. 方钢管相贯节点转动刚度性能研究 杜纯领. X型圆钢管相贯节点平面外抗弯性能研究 [J]. Journal of Shandong Jianzhu University, 2010, 25(3): 231-235. 孟宪德. X型圆钢管相贯节点平面外受弯滞回性能研究 赵必大,赵滇生,梁佟. 圆钢管相贯节点刚度的两种获取方法及其比较 [J]. 工程力学,2013,30(3): 1-7. LI Xiumei, QIN Rong. QR method for second-order elastoplastic stability analysis of steel semi-rigid frame TOGO T. Experimental study on mechanical behavior of tubular joints [J]. Engineering Mechanics, 2013, 30(3): 1-7. MAKINO Y, KUROBANE Y, OCHI K, et al. Database of test and numerical analysis results for unstiffened tubular Joints [D]. 上海:同济大学建筑工程系,2010. [J]. Proceedings of ICE Part 2, 1986, 81(4): 675-696. [J]. Proceedings of ICE Part 2, 1986, 81(4): 659-673. [D]. 西安:西安建筑科技大学土木工程学院,2005. [D]. 上海:同济大学建筑工程系,2007. [D]. 上海:同济大学建筑工程系,2010. [J]. 西安建筑科技大学学报,2013,45(1): 43-50. ZHAO Bida, ZHAO Diansheng, LIANG Tong. Two methods to acquire stiffness of unstiffened CHS-joints and the comparison between different methods [J]. Journal of Xi'an University of Architecture Technology, 2013, 45(1): 43-50. [D]. Osaka: Osaka University, 1967. [J]. IIW Doc. XV-E, 1996, 220(96): 601-608.
点击查看大图
计量
- 文章访问数: 990
- HTML全文浏览量: 57
- PDF下载量: 396
- 被引次数: 0