Web Geographic Information Services-Based Acquisition Method of Digital Terrain Data for Highway Location
-
摘要: 针对道路前期规划阶段纸质地形图陈旧、数字地形信息获取困难且成本高的特点,在综合分析当前开放网络地理信息资源的基础上,利用航天飞机雷达地形测绘使命(shuttle radar topography mission, SRTM)数据和Google Maps影像,提出了获取构建道路数字化选线系统虚拟地理环境所需的数字高程模型 (digital elevation model, DEM)和数字正射影像 (digital orthophoto map, DOM)的方法,并设计了Google Maps影像瓦片快速下载方法;基于分治法的思想,提出了一种全局非线性、局部线性的Google Maps影像变换算法,实现了与SRTM数据的快速配准,并在此基础上进行了地形数据获取与建模测试.研究结果表明:通过自动计算瓦片URL地址,采用libcurl库函数和多线程下载技术,下载影像瓦片速度稳定、快捷、自动化程度高;获取的DOM分辨率可达0.2 m以上,与DEM数据配准后,构建的虚拟地理环境能满足道路前期规划阶段开展数字化选线设计的需要.Abstract: In the initial stage of a highway planning, obsolete topographic maps and the difficulty and high economic costs in acquiring digital terrain data always present challenges for digital location design. To address these challenges, a method based on comprehensive analysis of current geographic information resources available in the open network was proposed. It makes use of the shuttle radar topography mission (SRTM) data and Google Maps images to acquire the digital elevation model (DEM) and digital orthophoto map (DOM) for modeling in the virtual geographical environment (VGE) of highway digital location system. Then, a method for quick download of Google Maps image tiles was developed; a globally nonlinear and locally linear compression algorithm for the transformation of Google Maps images based on the divide-conquer method was proposed to realize quick match with SRTM data. Finally, terrain data acquisition and modeling test were conducted to verify the proposed method. The results show that stable, quick, and automatic download of image tiles can be achieved by automatically calculating tile URL address, using libcurl library functions and multithread downloading technology. The resolution of the acquired DOM is greater than 0.2 m. After data match with DEM, the constructed VGE meets the requirements of highway digital location design in the initial planning stage.
-
Key words:
- location design /
- DEM /
- DOM /
- web geographic information /
- virtual geographic environment
-
易思蓉,朱颖,许佑顶. 铁路线路BIM与数字化选线技术 [M]. 北京:中国铁道出版社,2014: 1-2. CHANDER G, MARKHAM B L, HELDER D L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors ROY D P, WULDER M A, LOVELANDT R, et al. Landsat-8: science and product vision for terrestrial global change research 蒋勇. 各种卫星影像数据在铁路勘测中的应用 [J]. Remote Sensing of Environment, 2009, 113(5): 893-903. 张朝忙,刘庆生,刘高焕,等. STRM3与ASTER GDEM数据处理及应用进展 BAILEY J E, SELF S, WOOLLER L K, et al. Discrimination of fluvial and eolian features on large ignimbrite sheets around La Pacana Caldera, Chile, using landsat and SRTM-derived DEM [J]. Remote Sensing of Environment, 2014, 145: 154-172. SU Y F, SLOTTOW J, MOZES A. Distributing proprietary geographic data on the World Wide Web: University of California at Los Angeles CIS database and map server [J]. 铁道勘察,2013(5): 16-18. JIANG Yong. All kinds of satellite image data application in railway survey BLOWER J D, HAINES K, SANTOKHEE A, et al. GODIVA2: interactive visualization of environmental data on the web 王子明. Google Earth在公路工程可行性研究中的应用 [J]. Railway Investigation and Surveying, 2013(5): 16-18. 朱颖,蒲浩,刘江涛,等. 基于数字地球的铁路三维空间选线技术研究 [J]. 地理与地理信息科学,2012(5): 29-34. ZHANG Chaomang, LIU Qingsheng, LIU Gaohuan, et al. Data processing and application progress of SRTM3 and ASTER GDEM 易共才,王彦军,高宏. Google Earth在公路工程中的应用研究 王一波,邵伟伟,罗新宇. Google Earth数据精度分析及在铁路选线设计中的应用 [J]. Geography and Geo-Information Science, 2012(5): 29-34. 高山. 基于SRTM DEM, ASTER GDEM 地貌特征分析与铁路选线 [J]. Remote Sensing of Environment, 2007, 108(1): 24-41. 寇曼曼,王勤忠,谭同德. Google Map数字栅格地图算法及应用 崔金红,王旭. Google地图算法研究及实现 NIKOLAKOPOULOS K G, KAMARATAKIS E K, CHRYSOULAKIS N. SRTM vs ASTER Elevation products, comparison for two regions in Crete, Greece [J]. Computers and Geosciences, 2000, 26(7): 741-749. 杜小平,郭华东,范湘涛,等. 基于ICESat/GLAS数据的中国典型区域SRTM与ASTER GDEM高程精度评价 International Association of Oil and Gas Producers(IOGP). Coordinate conversions and transformations including formulas, guidance note 7-2 [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2009, 367(1890): 1035-1039. [J]. 公路交通技术,2008(5): 4-6. WANG Ziming. Application of google earth in feasibility study of expressway project [J]. Technology of Highway and Transport, 2008(5): 4-6. [J]. 铁道工程学报,2009(7): 33-37. ZHU Ying, PU Hao, LIU Jiangtao, et al. Research on the digital earth-based 3D spatial technology for railway route selection [J]. Journal of Railway Engineering Society, 2009(7): 33-37. [J]. 中外公路,2008(1): 1-4. [J]. 铁道勘察,2010(5): 68-71. WANG Yibo, SHAO Weiwei, LUO Xinyu. Analysis on accuracy of Google Earth data and its applications in optimized design on railway routes [J]. Railway Investigation and Surveying. 2010(5): 68-71. [J]. 铁道工程学报,2012(9): 1-6. GAO Shan. Analysis of topographic feature with SRTM DEM and ASTER GDEM data and railway alignment [J]. Journal of Railway Engineering Society, 2012(9): 1-6. [J]. 计算机技术与发展,2012(4): 204-206. KOU Manman, WANG Qinzhong, TAN Tongde. Research on goolge map algorithm and application [J]. Computer Technology and Development, 2012(4): 204-206. [J]. 计算机科学,2007(11): 193-195. CUI Jinhong, WANG Xu. Research on goolge map algorithm and implementation [J]. Computer Science, 2007(11): 193-195. [J]. International Journal of Remote Sensing, 2006, 27(21): 4819-4838. [J]. 地球科学(中国地质大学学报),2013,38(4): 887-897. DU Xiaoping, GUO Huadong, FAN Xiangtao, et al. Vertical accuracy assessment of SRTM and ASTER GDEM over typical regions of China using ICESat/GLAS [J]. Earth Science(Journal of China University of Geosciences), 2013, 38(4): 887-897. [EB/OL].
点击查看大图
计量
- 文章访问数: 913
- HTML全文浏览量: 66
- PDF下载量: 592
- 被引次数: 0